Vorschaubild

Qualifikationsarbeiten

BSc Theses:

  • Michael Krawez: "Model Generation in Local Theory Extensions and Applications to Verification", 2012

  • Miguel Angel Molina Hernandes: "Algorithmen zur Überprüfung der Erfüllbarkeit in Fragmenten der Linearen Arithmetik", 2014

  • Anais Böttcher: "Die Verikation von Sicherheitseigenschaften von Systemen von Fahrzeugen", 2016

  • Sven Christoph: "Formal Verification of Safety of Acceleration Behavior in Automated Driver Assistance Systems", 2017

  • Sebastian Thunert: "Anwendung von Symbolelimination in Theorieerweiterungen", 2017

  •  Julius Wild: "Visualisation of Scenarios for Autonomous Driving", 2018

  • Jamal Droßard: "Automated proving of topological theorems using encodings in modal logics", 2018

  • Matthias Becker: "Implementierung und Verifikation von Sicherheitseigenschaften autonomen Fahrens mit Lego Mindstorms". 2019

  • Fabian Bell: "Comparison of Approaches for Invariant Generation". 2019

  • Kevin Weirauch: "Automatische Beweise in der Mengenlehre und deren Anwendungen in Mathematik und Verifikation" . 2020

  • Philipp Marohn: "Verifikation und Generierung von Constraints in parametrisierten Systemen", 2021

  • Tim Merker: "Toolkit für automatisches Beweisen und Symbolelimination durch geordnete Resolution", 2021

  • Fabian Maxeiner: "Verifikation von Sicherheitseigenschaften für lineare, hybride Automaten", 2021

  • Timothy Gillespie: "Applied Constraint Generation on Parameters of Recursive Functions and Data Structures for Structural Induction Proofs", 2022

  • Mike Wickert: "Toolkit für den aussagenlogischen Tableaukalkül", 2023

  • Valerie Simon: "Automatisches Beweisen in der geometrischen Graphentheorie", 2024

  • Jan Denzer: "Axiom-Pinpointing und alternative Verfahren zur Erklärung von Subsumtionsbeziehungen in Beschreibungslogiken", 2024


MSc Theses:

  • Daniel Heck: "Automatisches Beweisen mittels Gröbnerbasen in der Geometrie", 2014

  • Irina Karpova: "Craig Interpolation in UTVPI", 2015

  • Dennis Peuter: "Automatisches Beweisen in der analytischen Geometrie", 2016

  • Sebastian Thunert: "Automatization of Computing High-Level Explanations for Subsumptions in EL and EL+", 2021

  • Katarina Miller: "Automatisierung von automatischen Beweisen in der analytischen Geometrie", 2023

  • Kevin Weirauch: "Automated Reasoning in Local Theory Extensions", 2023

  • Tim Merker: "Specification and Verification of Autonomous Vehicles in a Road Blockade", 2023

  • Vivien Laszlo: 2024 (ongoing, advised together with Matthias Thimm)

  • Fabian Maxeiner: 2024


PhD Theses:

  • Swen Jacobs: "Hierarchic Reasoning in Verification", 2009

  • Carsten Ihlemann: "Reasoning in Combinations of Theories", 2010

  • Markus Bender (ongoing)

  • Dennis Peuter: "Applications for Symbol Elimination in Combination with Hierarchical Reasoning”, 2024

  • Lucas Böltz (ongoing)


Further Topics

We have various topics for BSc, MSc and PhD theses.

If you are interested in writing a thesis in the group, just contact us.

Area: Study theories for which complete instantiation method exists:

Most of the algorithms for checking satisfiability modulo theories were devised for being used for ground formulae. Therefore, the state-of-the-art SMT solvers with support for quantifiers use heuristics for quantifier instantiation. Such heuristics are in general sound but incomplete: if a contradiction is derived after instantiating a set N of clauses, then N is clearly unsatisfiable. However, if no contradiction can be derived after instantiation we do not know anyting about the satisfiability of N (it could happen that not all instantiations needed for deriving a contradiction were considered). It is therefore important to identify classes of theories for which complete instantiation methods exists, i.e. in which we can characterize the set of instances which are necessary and sufficient for deriving a contradiction in case of unsatisfiability. The advantage of having a complete instantiation method is that if unsatisfiability cannot be derived from the set of instances of N, we have the guarantee that the set N of quantified clauses is satisfiable. In fact, we often can effectively construct a model of N from a model of its set of instances.

Topics for PhD theses are available in the following areas:

  • Automated reasoning and applications

  • Verification (reactive and real time systems/hybrid systems)

  • Ontologies/description logics

If you are interested in a thesis in one of the areas above (or in related areas) please contact Viorica Sofronie-Stokkermans

Topics for BSc and/or MSc theses: