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Abstract. Models in general and class diagrams as defined by the UML in partic-
ular play an important role throughout all steps of modern software development.
However, the UML contains several modeling concepts which are not defined pre-
cisely and hence are used either rarely or in varying ways and with different seman-
tics. In this article, an extension of n-ary associations as one of those concepts is
presented including their refinement by specialization, subsetting and redefinition.
DHHTGraphs are introduced as one realization of this extension treating associa-
tions and links as first-class objects. In particular, a metamodel and a possible im-
plementation realizing association end refinement by association specialization are
presented.
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Introduction

In modern software development processes, models are becoming the central artifacts
during all development phases from requirements engineering to implementation and
even maintenance and re-engineering. One of the most used kinds of models are class
diagrams as defined by the UML [1] or in the variants defined by e.g. the metamodeling
languages MOF [2] or EMF [3].

While the expressiveness of MOF and EMF is limited especially regarding associa-
tions, the UML provides several advanced modeling concepts such as n-ary associations
and several possibilities to refine associations and association ends. While some of them,
especially redefinition, are not defined precisely and thus are used in varying ways, others
such as associations specialization and n-ary associations are rarely used at all. As stated
by Genova et al. [4], n-ary associations are of limited use in the way they are currently
defined in the UML. In practice, they are often simulated by relation-like objects.

Based on the work of Genova et al. [4] and the formal description of the semantics
of redefinition in [5], this article tries to fill the existing gaps in the definition of these
modeling concepts and presents a precise and concise definition of n-ary associations
and their refinement by specialization, subsetting and redefinition. Furthermore, is shows
how this semantics could be implemented treating links as first-class objects.

The next section presents an example use case, motivating the need of a precise defi-
nition of n-ary associations and their refinement. Section 2 introduces n-ary associations,
the refinement concepts for associations and association ends. Furthermore, the exten-
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Figure 1. Example for a n-ary association

sion on the semantics of n-ary associations proposed by Genova et al. [4] is shown in this
section with some further additions.

In Section 3 the refinement of n-ary associations and their ends is analyzed. A meta-
model supporting the extensions of Genova as well as the refinement concepts is pre-
sented in Section 4, and a possible implementation is presented in Section 5. Other im-
plementations, further work on refinement of associations and its ends and on n-ary as-
sociations are listed in Section 6. Finally, Section 7 summarizes the main propositions of
this article.

1. Motivation

Being in modern model-centric development processes, models become the central arti-
facts in the software development lifecycle. Thus, their creation, modification and trans-
formation by humans as well as by programs gets more important, while the generation
of implementation code tends to be reduced to a primarily technical and automatable
step. An appropriate modeling language should therefore be expressive, flexible and nat-
ural enough to allow for convenient and detailed modeling of systems. Simultaneously,
the language’s concepts need to be defined precisely for the language to be automatically
processable by programs such as transformations.

Besides domain specific languages (DSL) in various variants, class diagrams as de-
fined by the Unified Modeling Language (UML) are still one of the most used languages.
While known to most modelers and easy to understand in their conceptional semantics
and basic model elements, some of their details are defined either not precisely enough
or in a way not obvious to all modelers. An example is shown in the following.

In the ReDSeeDS? project, model driven development has been combined with case-
based reuse driven by requirements [6]. Software systems are developed using model
transformation technologies during all development steps from requirements to code,
where traceability links are used to record the transformations performed together with
their affected elements. Besides only linking transformation sources with transformation
targets, it may be useful to attach the used transformation rule as a further element to
each traceability link. Figure 1 shows a simplified metamodel as an example for n-ary
associations.
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Conceptually, the model describes that links of the n-ary association Traceabili-
tyLink connect Requirements as sources with ArchitectureModelEle—
ments as targets. Additionally, if a link is a result of a transformation, the
TransformationRule used should be attached to the link as a further element.
GoalTraceabilityLinks are a special kind of TraceablityLinks, as ex-
pressed by the association specialization. Furthermore, as defined by the association end
sourceGoal and the additional redefinition constraint, GoalTraceabilityLinks
may not connect to all kinds of Requirement but are restricted to Goals.

According to the semantics of n-ary associations defined by the UML, the model
does in fact not represent this conceptual idea. As already mentioned by Genova et al.
[4], the semantics of n-ary associations as defined by the UML is not very obvious and
considers objects to be more important than links. It originates from the cardinalities in
entity-relation diagrams, which allow to define the number of relations an element partic-
ipates in by cardinalities in a flexible way, while no such possibility exists for relations.
E.g., in UML as well as in ER diagrams every end of an association or relation denotes,
that there is exactly one object connected to this end for each instance of the associa-
tion while it is not possible to define, that for one end of a relation there may be more
elements connected to one instance of the relation. In the example, it is not possible to
define that at one TraceabilityLink there may be several Requirements. While
such a preference of objects may be adequate in prescriptive models for code generation,
where associations are only implemented indirectly by (coupled) attributes representing
the association ends, such limitations seem to be no longer reasonable if models become
the central software artifacts.

Besides the multiplicities, there is a further issue with the specialization of associa-
tions and the inheritance of association ends. Even if association specialization is rarely
used explicitly and usually expressed by subsetting or redefinition of association ends,
there is still a benefit of specialization as shown in Figure 1. Conceptually, the spe-
cialization of TraceabilityLink by GoalTraceabilitylink describes, that
GoalTraceabilityLink isaspecial kind of TraceabilityLink which inherits
all features from the superclass. While this semantics is compatible to the well-known
and widely used specialization of classes and the descriptions of generalization in the
UML Superstructure [1, p.72], it is not compatible to the description of associations in
the same document [1, p.40].

Furthermore, as earlier shown in [5], the semantics of redefinition and subsetting
and its interrelation to association specialization is not precisely defined. While a pro-
posal for the refinement of binary associations has been given in [5], refinement of n-ary
associations has not been tackled and is even more complicated. Probably, these com-
plications are at least one reason, why n-ary associations are rarely used in practice but
simulated by relation-like objects. While this workaround enables a more flexible way
to define connections of such simulated association and classes on the one hand, it en-
forces a special treatment of those relation-like objects and their connected links in all
algorithms working on the model. As shown later in this article, such a simulation is
not necessary, if the concept of n-ary associations defined by the UML is extended and
associations are treated as first-class objects. As a basis for this extensions, the single
concepts are introduced in detail in the next section.
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Figure 2. Relevant part of the UML metamodel

2. Definitions in the UML Metamodel

The UML is defined by a metamodel written in the Meta Object Facility (MOF) [2],
which is a subset of UML class diagrams. In this metamodel, the UML concepts of
classes, associations, association classes, and properties are defined by classes. Their
relationships such as specialization of classes and associations as well as subsetting and
redefinition of properties are expressed by associations between the relevant classes. An
UML model is an instance of the metamodel. Figure 2 shows the relevant part of the
UML metamodel with the classes Class, Association and Property and the
relevant associations. In the following, the concepts are described in some more detail,
using quotations of the UML specification.

2.1. Classes, Associations, and Properties

Classes as representations of entities of the modeled world are instances of the metaclass
Class. According to the UML superstructure, “a class describes a set of objects that
share the same specifications of features, constraints, and semantics.” The relations be-
tween entities of the modeled world are abstracted by associations, which are instances
of the metaclass Association. The connections of classes and associations, also re-
ferred to as association ends, as well as attributes of classes and associations are instances
of the metaclass Property.

As mentioned above, classes and associations can be specialized while properties
can be refined by subsetting and redefinition. In the following, these concepts are ex-
plained using the model from Figure 1 as example. Furthermore, as n-ary associations
have a special semantics shortly introduced above, they are also described in a bit more
detail together with the extension proposed by Genova et al. [4].



2.2. Specialization

Classes as well as associations can be specialized and generalized, as indicated by the
reflexive association at Classifier with the rolenames special and general in
the metamodel. According to the UML Superstructure, the specialization of a classifier
means that

"An instance of a specific Classifier is also an (indirect) instance of each of the gen-
eral Classifiers. [...] features specified for instances of the general classifier are im-
plicitly specified for instances of the specific classifier." [1, p. 55]

Since Class as well as Association are both subclasses of Classifier, this
notion holds for both of them with some additional constraints imposed for associations:

"An association specializing another association has the same number of ends as the
other association. [...] every end of the specific association corresponds to an end of
the general association, and the specific end reaches the same type or a subtype of the
more general end." [1, p. 40] "The existence of a link of a specializing association
implies the existence of a link relating the same set of instances in a specialized
association." [7, p. 113]

As described by those statements and conforming to the examples and usages of asso-
ciation specialization in the UML, associations may be specialized, but it is assumed
that association ends are not inherited on specialization but need to be defined explicitly
for each association. While for binary associations notated as solid lines connecting two
classes the ends are defined implicitly anyway, the necessity to define the ends seem to be
not reasonable for n-ary associations, as shown by the example in Figure 1. In this model,
the explicit definition of two additional association ends at GoalTraceabilityLink
would make the model mode complicated without any additional gain in precision.
Therefore, an extension treating classes and associations equivalently regarding special-
ization is described later on in this article.

2.3. Subsetting

Similar to the specialization of classifiers, the refinement of properties is supported in
the UML by a concept named subsetting. While its definition is scattered over various
places in the Super- and Infrastructure, a good description is:

"An end of one association may be marked as a subset of an end of another in cir-
cumstances where [...] each of the set of types connected by the subsetting associ-
ation conforms to a corresponding type connected by the subsetted association. In
this case, given a set of specific instances for the other ends of both associations, the
collection denoted by the subsetting end is fully included in the collection denoted
by the subsetted end."[7, p. 113]

Figure 3 shows an example for subsetting. For all instances of Goal, the set target
contains all elements of the set target Component. As shown in [5], subsetting of one
end of a binary association and specialization of the association mutually imply each
other. Regarding n-ary associations, this statement needs to be generalized with respect
to subsetting between two ends at the same association, as shown in Section 3.
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Figure 3. Subsetting and redefinition at a binary association
2.4. Redefinition

In addition to subsetting, the UML provides a concept named redefinition for the overrid-
ing refinement of properties as association ends and attributes. The redefinition concept
is also used for the refinement of operations, but in this case not related to subsetting and
association specialization and thus not considered here. While redefinition is not defined
coherently in the UML Super- and Infrastructure, we assume the following semantics,
which has been justified in detail in [5] and enables a practical usage of redefinition in
our application domain.

"Redefinition is a relationship between features of classifiers within a specialization
hierarchy. Redefinition may be used to change the definition of a feature, and thereby
introduce a specialized classifier in place of the original featuring classifier, but this
usage is incidental." [1, p. 41] "A redefined property must be inherited from a more
general classifier containing the redefining property." [1, p. 128] "An end of one
association may be marked to show it redefines an end of another in circumstances
where [...] each of the set of types connected by the redefining association conforms
to a corresponding type connected by the redefined association. In this case, given
a set of specific instances for the other ends of both associations, the collections
denoted by the redefining and redefined ends are the same."[7, p. 113]

As defined in this statements, redefinition is similar to subsetting with an additional con-
straint. In the context of the redefinition, all instances of the redefined property need to
be also instances of the redefining one. All those instances are accessible using the re-
defining rolename as well as the redefined one. In Figure 3, the redefinition constraint
at the association end sourceGoal specifies, that for all instances of Component
the sets source and sourceGoal are identical. Thus, only Goals could be linked to
Components, but they are accessible by the rolename sourceGoal as well as by the
inherited one source.

2.5. N-ary Associations

While the associations usually used in class diagrams are binary with instances con-
necting exactly one source with exactly one target element, the UML allows for a more
general kind of associations with a higher arity, whose instances connect more than two
elements. The association TraceabilityLink in Figure 1 above is an example for
such an n-ary association. The UML describes the semantics of an n-ary association as
follows:

"For an association with N ends, choose any N-1 ends and associate specific instances
with those ends. Then the collection of links of the association that refer to these spe-
cific instances will identify a collection of instances at the other end. The multiplic-



. target .
Requirement source m- BinaryTraceabilityLink arget - ArchitectureModelE lement
1 1. 0.* 1

source

BinaryTraceabilityLink m target

0.* 1..*

Requirement ArchitectureModelE lement

Figure 4. Binary association notated as a solid line and as a diamond

ity of the association end constrains the size of this collection."[1, p. 56] "For n-ary
associations, the lower multiplicity of an end is typically 0. A lower multiplicity for
an end of an n-ary association of 1 (or more) implies that one link (or more) must
exist for every possible combination of values for the other ends."[1, p. 57]

Thus, the semantics of the association Traceabilitylink above is, that for each
pair of Requirement and ArchitectureModelElement there is up to one
TransformationRule linked to the pair and for each pair of Requirement
[ArchitectureModelElement] and TransformationRule, there is at least
one ArchitectureModelElement [Requirement] linked to the pair.

As shown by Genova et al. [4], this semantics does not allow for the detailed spec-
ification of participation constraints for the single classes connected by an n-ary asso-
ciation nor for the association itself. Genova et al. have proposed to extend the entity-
relationship [8] like UML multiplicities by a second kind of multiplicities based on the
method Merise [9]. This kind of multiplicity should be notated near the diamond depict-
ing the association and is referred to as "inner multiplicity", while the Chen-like multi-
plicity of UML is called "outer multiplicity". In Figure 5, these two kinds of multiplici-
ties are depicted at each association end. The semantics of those multiplicities is defined
as follows: "The outer multiplicity [...] specifies the potential number of values at the
specified end with respect to a combination of values at the other n—1 ends. A minimum
outer multiplicity O means that the specified link end may be empty. The inner multiplic-
ity [...] specifies the potential number of combinations of values at the other n — 1 ends
with respect to one value at the specified end. A minimum inner multiplicity 0 means
that the elements at the end may not take part in the association."[4]

While these descriptions are still focused on the classes participating in an associ-
ation and still considers objects to be more important than links, its is much easier to
express the semantics of multiplicities if associations and its links are treated as first-
class objects. In that case, the inner multiplicities define the number of links that may be
connected to an object while the outer multiplicities defines the number of objects con-
nected to a link. Assuming this semantics, the multiplicities at the association end named
source in Figure 1 specify, that at each Requirement there may be an arbitrary
number (0. . x) of TraceabilityLinks, while atleastone (1. .*) Requirement
participates in each such link. As the association is instantiated by a link, each end of the
association is instantiated by zero, one or more ends of the link. Thus, each association
end denotes sets of connections between one links and several objects and vice versa.
The special case of a binary association and its representation as a solid line between the
objects omitting the diamond and the multiplicities for the objects connected to a link is
shown in Figure 4. Both notations in this figure are equivalent.

Similar to the set of connections at an object, which can be specified in more detail
by constraints such as ordered or unique, also the set of connections at a link should
be specifiable using the established constraints. Furthermore, the specialization of asso-



Requirement 1. transformationSource m» ArchitectureModelElement

target p - name: String

- name: String usedRule B 0.*

TraceabilityLink

TransformationRule

- name: String
version: Integer

GoalTraceabilityLink
1.%

Goal {redefines
transformationS ource}

Component

0.*
transformationS ourceGoal {red efines transformationSource}
{subsets transformationS ource}
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ciations and the refinement of association ends by subsetting and redefinition need to
take this new semantics into account.

3. Refinement of N-ary Associations

As argued in Section 1 above, in a model-centric development environment there is
no reason why the inheritance of association ends is treated different in the specializa-
tion of classes and associations. Treating associations as first-class objects, their proper-
ties such as their ends should be subject to specialization as they are for classes. Such
an inheritance would allow a modeling as shown in Figure 5, where the association
GoalTraceabilityLink specializes the association TraceabilityLink and
inherits all its association ends. Thus, GoalTraceabilityLinks also have ends con-
nectingto ArchitectureModelElementsand TransformationRules without
a need to specify these ends explicitly in the model. This semantics is analogical to the
semantics of classes, which inherit the properties from their superclasses.

However, a refinement of a class or a association usually also includes a refinement
of some of their properties such as attributed or connected association ends. While this
refinement is implicit in the association notation of the UML, the concepts of subsetting
and redefinition are used to refine the association ends connected to classes. The later
can also be used for associations if an inheritance of their ends is assumed.

3.1. Subsetting

In the UML it is stated, that the ends of an association need to conform to the ends
of every specialized association. In [5] it has been shown, that in fact the specializa-
tion of an association implies subsetting of all its ends. The semantics of subsetting de-
scribed in Section 2.3 can be generalized to cover the extension of n-ary associations
introduced above. A subset-relationship between two association ends denotes, that for
all links of the association with the subsetting end the set of connections denoted by
the subsetting end is fully included in the set of connections denoted by the subsetted
end. Analogical, at each instance of the class connected to the subsetting end this re-
striction holds. As an example, the constraint subsets transformationSource
at the association end transformationSourceGoal in Figure 5 defines, that for
each instance of Goal, the set of transformationSourceGoal-connections is
fully included in the set of t ransformationSource-ones. Similarly, this holds also



for GoalTraceabilityLink. It may be reasonable, not to restrict subsetting to two
ends of an association and its specialization, but to allow also a subsetting relationship
between two ends of the same association, similar to subsetting between two ends at the
same class allowed in the UML. The semantics of subsetting is indeed not changed by
this extension.

3.2. Redefinition

While subsetting can be used to define that one association end is a special case of an-
other one, it does not restrict the occurrence of the specialized end. Such a restriction
is possible by the usage of redefinition. As shortly introduced in Section 2.4, the redef-
inition of an association end restricts the existence of instances of the redefined end in
the context of the redefinition. This enables a covariant specialization of properties and
association ends, as it is possible to restrict inherited properties. Expressed in the terms
of links connecting objects, it is possible to restrict the links at an object by redefining
the other end of the association. The restriction of the objects connected to links is not
done by redefinition as it is defined in the UML, but for each association it is specified
explicitly which classes it connects without an inheritance of association ends on the spe-
cialization of an association. However, if the inheritance of association ends is assumed,
the redefinition concept can be extended to restrict also the objects connected to links.
An example is included in Figure 5. Similar to the multiplicities, the redefinition is no-
tated separately for the association and the class at each end. While the inner redefinition
constraints the links which may be connected to the objects of the class, the outer one
restricts the objects which may be connected to the links.

One redefinition at an association ends implies also a subsetting of the end, since the
restriction imposed by the redefinition is stronger than the subsetting. Thus, the statement
in Section 2.4, that redefinition implies subsetting, is also true for the extended version
of n-ary associations. However, we would propose to notate the subsetting explicitly for
clarity.

4. Metamodel for N-ary Associations

As argued in Section 1, a precise definition is necessary for modeling concepts to be
usable in practice. For the style of n-ary associations described above, such a defini-
tion and an appropriate implementation is given by the approach of Distributed Hier-
archical Hyper-TGraphs (DHHTGraphs). They are based on typed, attributed, ordered
directed graphs, (TGraphs [10]), and extend them by means of distribution, hierarchy
and hyperedges. In the context of this article, especially the hyperedges as a realiza-
tion of n-ary links are relevant, while the other features are not considered in detail. In
the context of DHHTGraphs, a slightly modified version of UML class diagrams called
Graph UML (grUML) is used to describe graph schemas, which serve as metamodels
for graphs. The diagram shown in Figure 5 is already a valid grUML diagram. The
classes Requirement, Goal and so on denote vertex types, while the associations
TraceabilityLink and GoalTraceabilityLink denote types of (hyper)edges
connecting vertices. The language grUML is defined by a metaschema, the part relevant
for the realization of n-ary associations is shown in Figure 6.
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The connections points of nodes and their connecting edges are defined by
IncidenceClasses, which are similar to properties in the UML. Each such one has
a name, a direction and a type analogical to the class Property shown in Figure 2.
Moreover, it stores the two kinds of multiplicities introduced in Section 2.5 which de-
fine the number of vertices connected by such an incidence to an edge and vice versa.
Similar to the multiplicity semantics of the UML, these multiplicities affect the in-
stances of the respective classes as well as all of their specializations. Furthermore, each
IncidenceClass defines the uniqueness of the connections at a vertex or an edge
by the attributes uniqueEdges and uniqueVertices. As in DHHTGraphs all in-
cidences at a class as well as at a vertex are ordered by default, this information is not
represented in the IncidenceClasses.

The possibility to specialize vertex-, edge- and incidence classes as representations
of entities, relationships and their connection points is expressed by a relationship in each
case. In every specialization, the properties are inherited. To allow a more detailed spec-
ification of connections, the two kinds of overriding refinement introduced in Section 3
are supported and expressed by the relationships hidesIncidenceClassAtEdge
and hidesIncidenceClassAtVertex. These relationships represent the redefini-
tion constraints as shown in Figure 5.

5. Implementation

The practical usability of a modeling language depends on frameworks which allow to
handle model instances, e.g. by the automatic generation of source code which imple-
ments the structure and behavior described by the model. For a class diagram, every class
in the model is transformed to a class in the desired implementation language, e.g. Java,
and features such as generalization are realized by appropriate concepts of that language.
For UML and MOF several such tools are established and used in practical software en-
gineering. The possibly best established one is the Eclipse Modeling Framework (EMF)
[3] based on the ECore metamodel. Similar to (Essential) MOF, ECore is restricted to
binary associations and does not support associations as attributable and generalizable
first-class elements, but reduces them to synchronized pairs of references representing
the association ends. Each rolename is implemented by a collection containing the ref-
erences to the appropriate linked objects. Since n-ary associations are not contained by
ECore, there is no support by the code generation, but they need to be emulated by artifi-
cial classes. This realization of associations is common also for other modeling environ-
ments, even if some of them support subsetting and redefinition of association ends by
synchronizing the relevant sets.



An alternative to the implementation of associations by their ends is the treatment of
links as first-order elements as realized in the graph-library JGralLab [10] and also used
for DHHTGraphs. Besides an easy realization of association attributes and generaliza-
tion, this allows also a convenient implementation of subsetting and redefinition and es-
pecially of n-ary associations. If the associations defined in the model are implemented as
classes with the links being instances of these classes, the role access can be realized by
a traversal of the respective link objects. Moreover, as shown in [5], this implementation
allows to use the specialization concept of the implementation language Java to realize
subsetting and redefinition, since the traversal of the links for the subsetted of redefined
rolename will include the links matched to the subsetting or redefining rolename without
any need of further synchronization. Only at the creation of the links, some additional
effort is necessary to deal with redefinition. In the listings below, the implementation of
the model depicted in Figure 3 is shown as an example. As a special feature of JGraLab,
the method getThat () allows to access the element at the other end of a link. The
iteration over all BinaryTraceabilityLink-links to access the role target in-
cludes all BinaryGoalTraceabilityLinks which are created if a Component is
added as a targetComponent to a Goal. The redefinition of the rolename source
by sourceGoal is realized by an appropriate check as shown below.

class Requirement ({
public BinaryTraceabilityLink addTarget (ArchitectureModelElement o) {
return graph.createBinaryTraceabilityLink (this, o);

}

public List<? extends ArchitectureModelElement> getTarget () {

List<ArchitectureModelElement> adjacences = new ArrayList<...>();
BinaryTraceabiltyLink edge = getFirstBinaryTraceabilityLink();
while (edge != null) {

adjacences.add( (ArchitectureModelElement) edge.getThat());
edge = edge.getNextBinaryTraceabilityLink(); }
return adjacences;

b}

class Component {
public BinaryTraceabilityLink addSource (Requirement r) {
if (!r instanceof Goal)
throw new SchemaException("Redefinition of role ’source’ ... ");
return graph.createBinaryGoalTraceabilityLink (r, this);

bl

Listing 1 Example implementation of role access on binary links

For n-ary associations, the implementation and in particular the role access is a bit
more complicated. At first, as not only two elements but combinations of sets of elements
are related by a link, there is the issue if such a role access is possible if only one element
participating in a link is given. In the UML, ends of n-ary associations are treated only
as member ends of that associations and not as properties of the relevant classes. Due to
the UML semantics of n-ary associations described in Section 2.5, an access to a role is
possible only if a combination of elements at the other end is given.

As an example, assume an object r of the class Requirement from Fig-
ure 5. An access to the rolename target on r may be interpreted in two differ-



ent ways and thus lead to two different results. Following the UML semantics, an
access to the role target is only valid, if a combination of Requirement and
TransformationRules is given but not for a single Requirement. However, if
the extended semantics of n-ary associations is assumed, it may be reasonable to ac-
cess the set of ArchitectureModelElements related to the Requirement by
TraceabilityLinks. An example implementation of this semantics is shown in the
listing below for the classes Requirement and TraceabiltiyLink.

public TraceabilityLink addTarget (ArchitectureModelElement o) {

TraceabilityLink t = (...) graph.createTraceabilityLink();
t.addSource (this); t.addTarget (o) ;
return t;

public List<? extends ArchitectureModelElement> getTarget () {

List<ArchitectureModelElement> adjacences = new ArrayList<...>();
TraceabilityLink edge = getFirstTraceabilityLink();
while (edge != null) {

adjacences.addAll (edge.getTarget ());
edge = edge.getNextTraceabilityLink(); }
return adjacences;

Listing 2 Implementation of role access on n-ary link in class Requirement

public void addTarget (ArchitectureModelElement o) {
//create target incidence of IncidenceClass TraceabilityLink_target
TraceabilityLink_target incidence = new TraceabilityLink_target (this, o);
//add element to set of incidences at this edge and object o
incidences.add (incidence); o.addIncidence (incidence);

public List<? extends ArchitectureModelElement> getTarget () {
List<ArchitectureModelElement> adjacences = new ArrayList<...>();
for (Incidence inc : incidences)
if (inc instanceof TraceabilityLink_target)
adjacences.add(inc.getVertex());
return adjacences;

Listing 3 Implementation of role access on n-ary links in class TraceabilityLink

As shown in line two of Listing 2, adding an element to a set denoted by a role-
name results in an edge to be created and the edge object returned by the create opera-
tion can be used to further attach elements to the relation represented by the edge. Spe-
cial care needs to be spent on the refinement of association ends by subsetting between
two ends at the same association. In general, refinement may be implemented either by
synchronized sets, with all its advantages and disadvantages described in detail in the
related work below, or by the usage of the specialization concept provided by the im-
plementation language. In the latter case, each association end needs to be represented
by a separate class and each link end by an appropriate object as realized in the exam-
ples above. While the main advantages of this implementation is the full support of the



model semantics, its main disadvantages is the increasing number of objects necessary
to represent model instances. However, for the case of binary associations the approach
has been proven in several projects which model instances containing several millions
of objects and links and it can be assumed, that also for the case of n-ary associations
the performance is sufficient. Furthermore, as shown by Scheidgen [11], all approaches
based on coupled association ends and their synchronization are not able to reflect the
semantics of subsetting and redefinition correctly without any further history.

The generated code allows to use the semantics of association specialization as well
as of property subsetting or redefinition. The representation of links as edges which are
first-order elements enables the usage of association attributes and thus offers modeling
concept not present in other modeling frameworks like EMF. While in those modeling
approaches the representation of relations carrying further information results in artificial
objects and a special treatment of them in the algorithms, the TGraph approach keeps
algorithms simple as it does not enforce such a distinction.

6. Related Work

Besides JGraLab and EMF there are some other modeling frameworks allowing to deal
with model instances by code generation. However, the established ones are restricted
to variants of EMF or EMOF without a support of n-ary associations. In the "MOF 2.0
for Java" implementation by Scheidgen [11], associations are represented by their ends
which are realized by Java references stored in collections with subsetting and redefi-
nition realized by synchronization of updates of those sets. Scheidgen shows, that this
synchronization is not trivial, and proposes additional dependency information for each
element to solve this issue. Scheidgen also discusses the alternative of implementing the
links, but assumes them to be of limited use. In Section 5 we have shown, that this is not
the case and that links can be used to implement subsetting and redefinition easily and
without any need for additional dependency information.

A similar approach without the additional dependency information is presented by
Amelunxen et al. [12]. As shown by Scheidgen [11, p 45], this approach has a slightly
different update semantics where deletion of an element previously added to a set does
not completely restore the previous state on all subsetted sets. The authors have also
shown, that subsetting or redefinition of one association end implies subsetting of all
other ends. However, in contrast to our interpretation of redefinition, which affects the
association itself rendering it abstract in the context of the redefinition, only the classes
are affected by the redefinition in their interpretation. Furthermore, the authors show,
that union on an association end implies an abstract association and vice versa. This
semantics is also supported by the implementation in JGraLab described above.

Olivé [13] identifies and formally defines different forms of refinement. He assumes
the redefinition of a property (as representation of the refinement of a relationship partic-
ipant) to be only a constraint on the connected elements of a relationship but independent
of an association specialization [13, p. 230f]. While possibly useful when modeling with-
out associations as first-class elements, this interpretation contradicts to the description
in the UML superstructure [1, p. 18].

While several approaches for n-ary links or hyperedges have been developed, their
usage and value has been discussed controversially. Engels and Schiirr [14] propose to



keep links a simple as possible. They argue, that otherwise the separation of edges and
vertices vanishes, leading to hyperedges pointing to hyperedges with their ends as new
kind of plain edges. As shown above, the separation is actually assured by a uniform and
consistent representation of simple edges and any more complex relationship.

7. Conclusion

If models become the central artifacts in the software development, the modeling lan-
guages used need to be expressive, flexible and natural enough to allow for convenient
and detailed representation of entities as well as their relationships. However, even the
widely used modeling language UML is not expressive enough for n-ary associations. In
particular, besides the definition of multiplicities for n-ary associations, there are some
issues regarding the refinement of associations and the inheritance of their properties.
Based on Genova’s [4] extensions to the multiplicities, also the refinement of associations
can be improved if associations are treated as first-class objects. Using the established
concepts of subsetting and redefinition of association ends in a slightly adopted way, a
details specification of relationships is possible by n-ary associations. As a realization of
this semantics, DHHTGraphs have been introduced and an exemplary implementation
has been presented.
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