
On the Relationships Between Subsetting,

Redefinition and Association Specialization

Daniel Bildhauer�

dbildh@uni-koblenz.de

University of Koblenz-Landau

Abstract. UML class diagrams and their variants in MOF and EMF
play an important role throughout all steps of modern software develop-
ment. A feature often used also in the UML definition itself is property
redefinition. However, not all aspects of redefinition and especially its
interrelation to property subsetting and association specialization are
defined and used coherently. This article fills existing gaps in the seman-
tics and shows, that redefinition can be interpreted as a special case of
subsetting and that association specialization and subsetting of its ends
imply eachother. A sample realization of this semantics treating links as
first-class objects is shown as a part of the TGraph library JGraLab.

1 Introduction

In modern software development, UML class diagrams and several of-
ten domain specific derivatives are used to describe structural aspects of
software systems. Additionally, they are used as the metamodeling lan-
guage e.g. in MOF and EMF and implemented in (meta-)modeling tools.
Such implementations need a precise definition of the language concepts
which is given by the UML Infra- and Superstructure for most concepts.
However, there are still some open issues such as the interrelation be-
tween the specialization of an association and the refinement of its ends
by subsetting or redefinition. This article tries to fill the existing gaps
and gives a precise and concise definition for association specialization,
property subsetting and redefinition, and their interrelation.
Even if the statements in this paper hold also for n-ary associations,
we focus on binary ones due to the following reason. Genova et al. [1]
have stated, that n-ary associations are of limited use in the way they
are currently defined in the UML. They have proposed an adaption of
their semantics and extension by additional multiplicities. A detailed
inspection of redefinition and subsetting at n-ary associations should
consider also these extensions. Finally, this would lead to an analogical
extension on redefinition and subsetting which is out of scope of this
paper.
An example use case for class diagrams is given in the next section,
motivating the need of a precise definition of the refinement concepts

� This work is partially funded by the German Research Foundation (DFG) and the
EU IST FP6 project ReDSeeDS



and their interrelation. Section 3 presents the description of association
specialization and property subsetting and redefinition in the UML and
shows relationships defined or explicitly negated. The interrelation sug-
gest by the single definitions and reasonable for implementation purposes
is shown in section 4. A proposal how to manifest this in the UML is
described in section 5, and the TGraph library JGraLab is presented as
a modeling framework implementing this semantics in section 6. Other
modeling frameworks and further work on refinement of associations and
its ends are listed in section 7. Finally, section 8 concludes the main
propositions and presents the examination and implementation of redef-
inition at n-ary associations as further work.

2 Motivation

In modern software development processes, modeling and model trans-
formation is used in nearly all steps from requirements engineering to
implementation. In the ReDSeeDS1 project, these technologies have been
combined with case-based reuse driven by requirements as it was shown
in [2]. In this context, a software system together with all its development
artifacts such as requirements and models is named a software case.
Such cases are developed using model transformation technologies dur-
ing all development steps from requirements to code. The single software
artifacts are connected by traceability links and stored in a software case
repository. To support reuse of existing solutions, this repository can be
searched for cases or parts of them whose requirements are similar to the
ones of the case currently under development. It can be assumed, that
cases with several similar requirements contain realizing artifacts which
can be reused in the current case. The comparison of requirements as
well as their transformation to models need a precise description of the
requirement language used. Hence, the developed Requirements Specifi-
cation Language (RSL) was metamodeled using MOF and the refinement
concepts of association specialization as well as property subsetting and
redefinition. Figure 1 depicts a simplified part of the RSL metamodel.
While originating from a special application domain, the model is used
as a running example here, since it illustrates the usage of the refinement
concepts and their interrelation in a small but realistic usecase. However,
the considerations below are not restricted to this special domain but are
valid in all models which use association specialization and refinement
of association ends.
Requirements of software systems are instances of the class Requirement
and their specializations Non-FunctionalRequirement (which is referred
to as NFR in the following) and UseCase. Requirements can be represented
by different ReqRepresentations such as Scenarios, which are linked to
the Requirement by HasRepr-links. The set of representations linked to a
requirement r is usually denoted by r.HasRepr or by r.representation

as an equivalent notation based on the rolename. The HasRepr associ-
ation is specialized by HasScenario and HasTextRep, linking UseCases

1 www.redseeds.eu



Fig. 1. Requirements metamodel using three refinement concepts

and NFRs to their more special representations which also have special
roles. The subsets representation-constraint at the role textRep en-
forces, that for every NFR n the set denoted by n.textRep is a subset of
the one denoted by n.representation. A more restrictive constraint is
the redefines representation-one at the role scenario, which forbids
the existence of other representations than Scenario to be linked to a
UseCase.
The RSL metamodel defines the abstract syntax of the artifacts stored in
the case repository, which uses the graph-library JGraLab as its internal
datastructure. In the context of JGraLab, the metamodeling language
called grUML (Graph UML) with an expressive power between EMOF
and CMOF is used to describe graph schemas which serve. as metamod-
els for graphs. To allow subsetting and redefinition to be used in the
RSL metamodel, these concepts have been introduced into grUML. Dur-
ing the extension it was noticed, that the three refinement concepts are
not coherently defined in the UML and that especially their interrelation
is not clear. However, a precise definition of the concepts is necessary for
a correct interpretation of metamodels using them and especially for the
development of tools. A detailed investigation of the UML documents
shows, that such a precise definition is possible and compatible with the
usually assumed semantics of the single concepts, even if it leads to inter-
relations between the refinement concepts which are explicitly negated in
the UML description. The specialization of an association is equivalent
to the subsetting of (one of) its ends and redefinition can be treated as
a subconcept of subsetting. In section 6 the implementation of this inter-
relation is described, treating associations as first-class elements. As the
basis for the following descriptions, the core part of the UML metamodel
is explained in the next section.

3 Definitions in the UML Metamodel

The UML is defined by a metamodel written in the Meta Object Facility
(MOF) [3], which is a subset of UML class diagrams. In this metamodel,
the UML concepts of classes, associations, association classes, and prop-
erties are defined by classes. Their relationships such as specialization of



Fig. 2. Relevant part of the UML metamodel

classes and associations as well as subsetting and redefinition of proper-
ties are expressed by associations between the relevant classes. A UML
model is an instance of the metamodel. For the detailed description of
the concepts, the Object Constraint Language (OCL) [4] is used as well
as natural language text. Figure 2 shows the relevant part of the UML
metamodel with the classes Class, Association and Property and the
relevant associations. In the following, the concepts are described in some
more detail with quotations of the UML specification, showing that there
is neither a concise nor a coherent definition, especially for the redefini-
tion feature, thus leaving much room for interpretation.

3.1 Classes, Associations, and Properties

Classes as representations of entities of the modeled world are instances
of the metaclass Class. According to the UML superstructure, “a class
describes a set of objects that share the same specifications of features,
constraints, and semantics.” The relations between entities of the mod-
eled world are abstracted by associations, which are instances of the
metaclass Association. The connections of classes and associations, also
referred to as association ends, as well as attributes of classes and asso-
ciations are instances of the metaclass Property.



Fig. 3. Class diagram and its object diagram

In its left part, figure 3 shows an instance of the UML metamodel notated
as an object diagram. In the right part, the visualization of this object
diagram as a class diagram is shown. The two classes A and B are instances
of Class and the association AtoB is an instance of Association. The
association ends with the rolenames a and b are instances of Property.
Each association end belongs to the association as a memberEnd and is
connected to both classes at the association. One class defines the type

of the property, while it belongs as an ownedAttribute to the one at the
other end of the association. Furthermore, each property is connected to
its opposite end at the association by a link.
As mentioned above, classes and associations can be specialized while
properties can be refined by subsetting and redefinition. In the following,
these concepts are explained based on their descriptions in the UML
Super- and Infrastructure, using the model from figure 1 as example.

3.2 Specialization

Classes as well as associations can be specialized and generalized, as in-
dicated by the reflexive association at Classifier with the rolenames
special and general in the metamodel. According to the UML Super-
structure, the specialization of a classifier means that

An instance of a specific Classifier is also an (indirect) instance
of each of the general Classifiers. Therefore, features specified
for instances of the general classifier are implicitly specified for
instances of the specific classifier. Any constraint applying to
instances of the general classifier also applies to instances of the
specific classifier. [5, p. 55]

Since the metaclasses Class as well as Association are both subclasses
of Classifier, this notion of specialization holds for both of them with
some additional constraints imposed by the UML for associations:

When an association specializes another association, every end
of the specific association corresponds to an end of the general
association, and the specific end reaches the same type or a
subtype of the more general end. [5, p. 40]
The existence of a link of a specializing association implies the
existence of a link relating the same set of instances in a spe-
cialized association [6, p. 113].



In the example model depicted in figure 1, the specialization of the as-
sociation HasRepr by HasScenario leads to the condition ∀i ∈ UseCase :
i.HasScenario ⊆ i.HasRepr. As each HasScenario-link is also an HasRepr-
link, the set of elements reachable by HasScenario-links from a UseCase

is a subset of the set reachable by HasRepr-links.

3.3 Subsetting
Similar to the specialization of classifiers, the refinement of properties
is supported in the UML by a concept named subsetting. Its definition
is scattered over various places in the Super- and Infrastructure, a good
description is:

An end of one association may be marked as a subset of an end of
another in circumstances where [. . . ] each of the set of types con-
nected by the subsetting association conforms to a corresponding
type connected by the subsetted association. In this case, given
a set of specific instances for the other ends of both associations,
the collection denoted by the subsetting end is fully included in
the collection denoted by the subsetted end[6, p. 113].

In the example model, the constraint subsets representation at the
role named textRep enforces, that for all NFRs i it holds i.textRep ⊆
i.representation. All instances contained in the set reachable by
i.textRep are also a member of i.representation.

3.4 Redefinition
Additionally to subsetting, the UML provides a concept named redef-
inition for the overriding refinement of properties as association ends
and attributes. The redefinition concept is also used for the refinement
of operations, but in this case not related to subsetting and associa-
tion specialization and thus not considered here. While the description
of redefinition is scattered over about 20 places in the Super- and In-
frastructure, we try to give an interpretation which is compatible with
the implementations of redefinition as realized e.g. by Scheidgen [7] and
enables a practical usage of redefinition in our application domain. Ac-
cording to the UML,

Redefinition is a relationship between features of classifiers within
a specialization hierarchy. Redefinition may be used to change
the definition of a feature, and thereby introduce a specialized
classifier in place of the original featuring classifier, but this us-
age is incidental. [5, p. 41].
A redefined property must be inherited from a more general
classifier containing the redefining property. [5, p. 128].

Similarly to subsetting as described above,
An end of one association may be marked to show it redefines
an end of another in circumstances where [. . . ] each of the set
of types connected by the redefining association conforms to a
corresponding type connected by the redefined association. In
this case, given a set of specific instances for the other ends of
both associations, the collections denoted by the redefining and
redefined ends are the same[6, p. 113].



This description is more precise than the other ones on the one hand but
it contradicts to another description in the Infrastructure, which states:

Redefinition prevents inheritance of a redefined element into the
redefinition context thereby making the name of the redefined
element available for reuse, either for the redefining element, or
for some other[6, p. 129].

Both statements describe redefinition as a concept to forbid instances of
an inherited property with one difference in the details. The first explains
it as similar to subsetting restricting only instances of the redefined prop-
erty, while the latter declares the redefined property as not existent at
the class where it is redefined. With the latter interpretation, there is one
major problem, since each subclass should contain all features defined
for the superclass as described in section 3.2. If redefinition prevents in-
heritance, the redefined feature is not present at the subclass and it is
not possible to treat the instances of the subclass as instances of the
superclass.
It seems to be reasonable to use the first interpretation given above.
Redefinition is treated as similar to subsetting with an additional con-
straint. In the context of the redefinition, all instances of the redefined
property need to be also instances of the redefining one. All those in-
stances are accessible using the redefining rolename as well as the re-
defined one. In the example model, the redefinition at the association
end named scenario assert, that the redefined association end named
representation must not be used at instances of UseCase and it is
not possible to link ReqRepresentations to UseCases. Due to the re-
definition, only HasScenario-links can be used at UseCases, leading to
Scenario objects only. As cited above (“...the collections denoted by the
redefining and redefined ends are the same...”), the collection of elements
linked to a UseCase as scenarioRep is also accessible by representation,
it holds ∀i ∈ UseCase : (i.representation = i.scenarioRep ∨ ∀k ∈
i.representation : k ∈ Scenario). Thereby, even if nothing in this di-
rection is stated in the UML, it seems that redefinition and subsetting
are somehow similar. A redefinition can be seen as a subsetting with
the additional semantics, that the association whose end is redefined is
treated as abstract in the context of the class containing the redefin-
ing property. Further details on the interrelation between subsetting and
redefinition are described in the following paragraph.

3.5 Interrelation of the Concepts

In contrast to the observation above, the relationship between the three
refinement concepts is undefined in the UML. In particular, the Super-
structure states this explicitly:

The interaction of association specialization with association end
redefinition and subsetting is not defined.[5, p. 41]

In contrast to this, the following is also stated in the Superstructure:
Association specialization and redefinition are indicated by ap-
propriate constraints situated in the proximity of the association
ends to which they apply. Thus:



– The constraint {subsets endA} means that the association
end to which this constraint is applied is a specialization of
association end endA that is part of the association being
specialized.

– A constraint {redefines endA} means that the association
end to which this constraint is applied redefines the associ-
ation end endA that is part of the association being special-
ized[5, p. 18].

In this description the interrelation between association specialization
on the one hand and subsetting and redefinition on the other is nearly
made explicit. Subsetting and redefinition are described as relationships
between ends of an association and its specialization. The semantics sug-
gested by this description is uncovered in the next section.

4 Formal definition

In the previous section it was shown, that the UML definitions of the re-
finement concepts for associations and their ends are not coherent. There
there is an implicitly described interrelation, which is explicitly negated
in the Superstructure. In the following, we try to make the interrelation
explicit, using the model already shown in figure 1 as an example.

4.1 Mutual implication of subsetting and specialization

Based on the considerations presented up to now, we claim that for two
associations HasRepr and HasTextRep, subsetting of one end of HasRepr
by an end of HasTextRep implies the subsetting of the other end as
well as the specialization of HasRepr by HasTextRep. Furthermore, the
specialization of the associations implies a subsetting of both ends.

Proposition 1 (Subsets and specialization imply eachother).
Given a model as depicted in figure 1, the subsetting of representation
by textRep is equivalent to the subsetting of requirement by nfr, and to
the specialization of HasRepr by HasTextRep.

Proof: According to the realization of association ends by properties and
their definition in UML and the definition of the dot-notation in OCL,
we know that for all instances of Requirement the sets reachable by the
representation role and the HasRepr links contain the same elements.

∀i ∈ Requirement : i.representation = i.HasRepr (1)

As NFR is a specialization of Requirement, its instances can be treated
as Requirements and the statement above is true also for NFR:

∀i ∈ NFR : i.representation = i.HasRepr (2)

The same holds also for the association HasTextRep and its ends:

∀i ∈ NFR : i.textRep = i.HasTextRep (3)



As textRep is marked as a subset of representation, it holds:

∀i ∈ NFR : i.textRep ⊆ i.representation (4)

Putting these formulas together, we get the following:

∀i ∈ NFR : i.textRep ⊆ i.representation (5)

⇔ ∀i ∈ NFR : i.HasTextRep ⊆ i.representation (6)

⇔ ∀i ∈ NFR : i.HasTextRep ⊆ i.HasRepr (7)

Thus, the set of elements reachable by an HasTextRep-link is a subset
of the one containing the elements reachable by an HasRepr-link. This
is not necessarily equivalent to a specialization between the two asso-
ciations, because it could also be regarded as a constraint, that there
must a HasRepr-link in every case when there exists an HasTextRep-one.
As soon as HasRepr is marked as abstract, there are no direct instances
which enforces a specialization of HasRepr by HasTextRep in this case.
Consequentially, it is obvious to assume such a specialization in all cases
and not to treat abstract and non-abstract associations different at this
point. Hence, the subsetting of one association end can be treated as
equivalent to the specialization of the association itself. Since associa-
tions are symmetric, it holds:

∀i ∈ NFR, k ∈ TextRep :

(k ∈ i.textRep) ⇔ (k ∈ i.HasTextRep) ⇔ (8)

(i ∈ k.HasTextRep) ⇔ (i ∈ k.nfr)

Thus, as the specialization of associations is equivalent to subsetting of
an end, the subsetting of one end also implies the subsetting of the other
one. This is exactly what was claimed in the proposition above. ��

4.2 Redefinition is a subconcept of subsetting

While the relationship between the specialization of an association and
subsetting of (one of) its ends has been explained above, the interrelation
between specialization and subsetting on the one hand and redefinition
on the other hand remains still unclear. Assuming the semantics of re-
definition given above to be the desired one, we claim that redefinition
of an association end is a special case of subsetting. Thus, also the re-
definition of an association end implicitly implies a specialization of the
association the end belongs to.

Proposition 2 (Redefinition is a subconcept of subsetting). Given
a model as depicted in figure 1, the redefinition of representation by
scenarioRep implies the subsetting of representation by scenarioRep,
of requirement by useCase and the specialization of HasRepr by Has-

Scenario.



Proof: From the description of redefinition (“...the collections denoted
by the redefining and redefined ends are the same”[6, p. 113]) in the In-
frastructure we know, that the sets denoted by representation and
scenarioRep are the same for all instances of UseCase, i.e. it holds
∀i ∈ UseCase : i.scenarioRep = i.representation. Thus, it also holds
∀i ∈ UseCase : i.scenarioRep ⊆ i.representation, which is exactly the
equation 4 of subsetting shown on page 9 above. With this equation, it
is possible to perform the same steps as above, leading to the equation
7 as a conclusion of redefinition. Thus, redefinition of association ends
can be treated as a subconcept of subsetting and hence implies the spe-
cialization of associations, which is also mentioned at some places in the
superstructure as shown above. ��

5 Proposal for the metamodel

Based on the considerations above, we propose some changes to the UML
metamodel, which does not reflect the relations between the three re-
finement concepts for associations and its ends. Even if software devel-
opment guidelines and (OCL) constraint as a workaround allow a usage
of these concepts, we believe that a modeling language should be as con-
cise and precise as possible without a need for additional regulations.
Our proposal deals with the classes Property and Association which
are depicted in figure 4. As we have shown above, redefinition is a spe-
cialization of subsetting. This should be present in the metamodel and
is made explicit by the subsets subsettedProperty constraint at the
association end named redefinedProperty at the class Property.

Fig. 4. Metamodel part affected by change proposal

Furthermore, the fact that subsetting and association specialization mu-
tually imply eachother should be expressed appropriately. As UML class
diagrams are not expressive enough, we use OCL to formulate this rela-
tionship as shown in the listing below.



context Association inv:

self.memberEnd->forall(i |

i.subsettedProperty->forall(k |

self.general->contains(k.association)

) )

and

self.special->forall(k |

k.memberEnd->forall(i |

i.association.general->contains(self)

) )

Listing 1.1. OCL constraint for subsetting and specialization

The first part of this OCL invariant ensures, that subsetting of properties
at association ends only occurs, if the association the subsetting property
belongs to is a specialization of the association containing the subsetted
property. The second part describes the dependency in the other direc-
tion. An association may only specialize another if its ends subset the
ends of the specialized one. Due to the definition of redefinition as a spe-
cial case of subsetting in the metamodel there is no explicit constraint
necessary for redefinition.

6 Implementation

The practical usability of a (meta) modeling language such as the UML
depends on frameworks which allow not only to draw models but also
to handle model instances. Often this is achieved by the automatic gen-
eration of source code which implements the structure and behavior de-
scribed by the model. For a UML class diagram, every class in the model
is transformed to a class in the desired implementation language, for
instance Java, and features such as generalization are realized by appro-
priate concepts of that language. For UML and MOF several such tools
are established and used in practical software engineering. The possibly
best established one is the Eclipse Modeling Framework (EMF) [8] based
on the ECore metamodel, which can be seen as a restriction of MOF 1.4.
Similar to Essential MOF (EMOF), ECore does not support associations
as attributable and generalizable first-class elements, but reduces them to
synchronized pairs of references representing the association ends. Each
rolename is implemented by a collection which contains the references to
the appropriate linked objects.

6.1 Realization of roles by links

This realization of links is common also for other modeling environments
as the ones mentioned in the related work below. In contrast to ECore
and EMOF, some of them support subsetting and redefinition of asso-
ciation ends by synchronizing the relevant sets. An alternative to the
implementation of links by coupled association ends is the treatment of



links as first-order elements which are known at the objects they con-
nect. Besides an easy realization of association attributes and general-
ization, this allows also a convenient implementation of subsetting and
redefinition. If the associations defined in the model are implemented as
classes, then the links are instances of these classes similar to objects
being instances of classes realizing the classes of the model. The classes
implementing associations and the rolenames used for the association
ends can be matched to each other. This allows the realization of a role
access by a traversal of the right association objects.
Assuming that subsetting and redefinition go along with an (implicit)
association specialization as shown in section 4, this implementation of
links allows to use the specialization concept of Java or other object-
oriented languages also to realize subsetting and redefinition. The asso-
ciation matched to a subsetting rolename is a subclass of the one matched
to the subsetted rolename due to the dependency between subsetting and
association specialization. Thus, the traversal of the links for the subset-
ted rolename will include the links matched to the subsetting rolename
without any need of further synchronization.
As soon as an element should be added to the set denoted by the subset-
ting rolename, an instance of the association matched to this rolename is
created. Due to the specialization, this link is also an instance of the as-
sociation matched to the subsetted rolename and thus is included in the
traversal of links to access this role. Also the redefinition feature can be
realized by the specialization easily. The only additional effort necessary
is a check when links should be created. The redefinition forbids instances
of the general association, thus instances of the association matched to
the redefining role need to be created even if elements should be added
to the redefined rolename.

6.2 Implementation in JGraLab

An implementation of this ideas which is used in practice is the TGraph-
library JGraLab2, developed at the Institute for Software Technology of
the University of Koblenz-Landau. JGraLab is the current implementa-
tion of the TGraph-Approach [9], which is based on typed, attributed,
ordered, and directed graphs, called TGraphs. A restricted form of UML
class diagrams called grUML (Graph UML) with an expressive power
between EMOF and CMOF is used to describe graph schemas, which
serve as metamodels for graphs.
The classes in a grUML diagram denote the node types while the associ-
ations denote types of edges connecting nodes. In JGraLab, Java classes
are generated automatically out of graph schemas described in grUML.
These classes realize the behavior described above and provide access to
collections denoted by rolenames by traversal of the edges whose types
are matched to the rolenames. As an example, the diagram depicted in
figure 1 is transformed into Java interfaces and implementing classes for
the node types Requirement, UseCase and so on and similar to interfaces
and classes for the edge types HasRepr, HasScenario and HasTextRep.

2 jgralab.uni-koblenz.de



Every link of type HasRepr between a node of type Requirement and
one of type ReqRepresentation is represented by an instance of the gen-
erated class for HasRepr. The read and write access to the rolename
representation is realized by the generated code in class Requirement,
whose main methods to add and remove elements and to retrieve the list
of linked elements are shown in the listing below.

public HasRepr addRepresentation(ReqRepresentation o) {
return (HasRepr)graph.createEdge(HasRepr.class, this, o);

}

public void removeRepresentation(ReqRepresentation o) {
//get first outgoing edge at vertex
Edge e = getFirstEdgeOfClass(HasRepr.class, EdgeDirection.OUT);
// iterate over edges at vertex
while (edge != null) {

Edge next = edge.getNextEdgeOfClass(HasRepr.class, EdgeDirection.OUT);
if (edge.getThat() == o) edge.delete(); //delete edge to o
edge = next;

}
}

public List<? extends Representation> getRepresentation() {
List<ReqRepresentation> adjacences = new ArrayList<ReqRepresentation>();
Edge edge = getFirstEdgeOfClass(HasRepr.class, EdgeDirection.OUT);
while (edge != null) {

adjacences.add((ReqRepresentation) edge.getThat());
edge = edge.getNextEdgeOfClass(HasRepr.class, EdgeDirection.OUT);

}
return adjacences;

}

Listing 1.2. Generated code to access rolename representation

In the addReqRepresentation(...) method, an HasRepr edge is cre-
ated to the ReqRepresentation object which should be added to the
Requirement instance in the role representation. Consequentially, these
edges are traversed in the getReqRepresentation() method to access
the role and removed in the removeReqRepresentation(...) method to
delete elements from the set representation. Similar methods are cre-
ated in the class implementing NFR for the role textRep as well as for
the inherited one representation. Depending on the method called, ei-
ther only HasTextRep or all HasRepr edges are taken into account and
thus either the set denoted by the role textRep or the inherited one
representation is accessed.
The same methods as shown for Requirement are also created for the
class UseCase with one difference in the addReqRepresentation(...)

method. To ensure, that only HasScenario links start at UseCase in-
stances as enforced by the redefinition of representation by scenario,
an additional test of the element to be added is necessary. If this element
is an instance of Scenario, a HasScenario edge is created, otherwise an
exception is thrown. The generated Java code is shown below.

public HasRepr addReqRepresentation(ReqRepresentation o) {
if (!o instanceof Scenario)

throw new SchemaException("Redefinition of role...");
return graph.createEdge(HasScenario.class, this, o);

}

Listing 1.3. Generated code in class C



This kind of implementation ensures, that the constraints imposed by re-
definitions of rolenames hold for all model instances. Using these meth-
ods, a JGraLab user can easily create and change graphs as instances
of metamodels described by grUML class diagrams. As grUML is a re-
stricted form of CMOF, its usage is not restricted to the context of graphs
but open to arbitrary application domains, providing an convenient and
efficient representation suitable also for a large amount of data, as it was
presented in [2].
The generated code allows to use the semantics of association specializa-
tion as well as of property subsetting or redefinition. The representation
of links as edges which are first-order elements enables the usage of asso-
ciation attributes and thus offers modeling concept not present in other
modeling frameworks like EMF. While in those modeling approaches the
representation of relations carrying further information results in arti-
ficial objects and a special treatment of them in the algorithms, the
TGraph approach keeps algorithms simple as it does not enforce such a
distinction.

7 Related Work

Besides JGraLab and EMF there are some other modeling frameworks
allowing to deal with model instances by code generation. An implemen-
tation for MOF 2.0 supporting subsetting and redefinition is realized by
Scheidgen [7] in the (meta-)modeling environment called “A MOF 2.0 for
Java”. Associations are represented by their ends which are realized by
Java references stored in collections. Subsetting and redefinition are re-
alized by synchronization of updates of those sets. Scheidgen shows, that
this synchronization is not trivial, and proposes additional dependency
information for each element to solve this issue. Scheidgen also discusses
the alternative of implementing the links, but he states that “links are
usually not used directly. Links are of rather limited use.” In section 6
we have shown, that this is not the case and that links can be used to
implement subsetting and redefinition easily and without any need for
additional dependency information.
A similar approach without the additional dependency information is
presented by Amelunxen et al. [10]. As shown by Scheidgen [7, p 45],
this approach has a slightly different update semantics where deletion
of an element previously added to a set does not completely restore the
previous state on all subsetted sets. In [11] the authors have also shown,
that subsetting or redefinition of one association end implies subsetting
of all other ends. In contrast to our interpretation of redefinition, which
affects the association itself rendering it abstract in the context of the
redefinition, only the classes are affected by the redefinition in their in-
terpretation. Taking the model from above as an example, HasRepr-links
between UseCase- and Scenario-objects would be still valid. Based on
this perspective, they propose an additional concept named equals to
express, that for all instances of Scenario all elements of type UseCase

included in requirement are also a member of useCase. If the existence of
HasRepr-links is forbidden between UseCase and Scenario by the redef-
inition as it is in our interpretation, then the additional equals concept



is not necessary. Its semantics as presented by Amelunxen and Schürr
is implicitly expressed by the redefinition. Furthermore, Amelunxen and
Schürr show, that union on an association end implies an abstract as-
sociation and vice versa. This semantics is also supported by the imple-
mentation in JGraLab described above.
The approached presented by Amelunxen is used for instance in the
MOFLON[12] transformation language, while JGraLab and its imple-
mentation of subsetting and redefinition by association specialization is a
supported repository backend of the MOLA transformation language[13].
Büttner and Gogolla [14] have inspected redefinition in the context of
generalization of classes and co/contravariance, focusing on the redef-
inition of operations. They have shown, that UML subclassing cannot
be used to define safe subtyping due to the covariant specialization sup-
ported with redefinition of attributes and operations. However, they ar-
gue that for the modeling of real world domains this specialization is
more adequate than a typesafe contra- or invariant one, a position that
is also shared by Ducournau [15].
Olivé [16] identifies and formally defines different forms of refinement.
He assumes the redefinition of a property (as representation of the re-
finement of a relationship participant) to be only a constraint on the
connected elements of a relationship but independent of an association
specialization [16, p. 230f]. While possibly useful if modeling without as-
sociations as first-class elements, this interpretation contradicts to the
description in the UML superstructure [5, p. 18].

8 Conclusion and further work

The refinement concepts of association specialization and subsetting and
redefinition of association ends allow the detailed modeling of relation-
ships in UML class diagram. Especially if these concepts are used to-
gether in one model, a precise definition of them and their interrelation
is necessary. In particular, the latter is not given in the UML but rather
described as “explicitly undefined”. As a proposal to fill this gap in the
UML metamodel it was shown, that redefinition can be treated as a
subconcept of subsetting while the latter is equivalent to association
specialization. This interpretation allows a high precision in modeling
as well as an easy implementation of tools based on models. Treating
links as first-class objects with an own identity as it is done in JGraLab,
implementations for models using all three refinement concepts can be
generated easily.
As ongoing and further work, the proposal of Genova et al. [1] for two
kinds of multiplicities at each end of an n-ary association can be trans-
fered to subsetting and redefinition. Allowing the redefinition of an as-
sociation end for the edge and the vertex independently may lead to an
improvement of the applicability of n-ary associations and might be sub-
ject of a further publication. A implementation in JGraLab is currently
in development and will allow the practical usage of n-ary relationships
in a broad application domain.



References

1. Génova, G., Lloréns, J., Mart́ınez, P.: The meaning of multiplicity
of n-ary associations in UML. Software and System Modeling 1(2)
(2002) 86–97

2. Bildhauer, D., Horn, T., Ebert, J.: Similarity-driven software reuse.
In: CVSM ’09: Proceedings of the 2009 ICSE Workshop on Com-
parison and Versioning of Software Models, Washington, DC, USA,
IEEE Computer Society (2009) 31–36

3. Object Management Group: Meta Object Facility (MOF) Core Spec-
ification, Version 2.0. (January 2006)

4. Object Management Group: Object Constraint Language, OMG
Availiable Specification, Version 2.0. (May 2006)

5. Object Management Group: Unified Modeling Language: Super-
structure, Version 2.2. (February 2009)

6. Object Management Group: Unified Modeling Language: Infrastruc-
ture, Version 2.2. (February 2009)

7. Scheidgen, M.: Description of Computer Languages Based on
Object-Oriented Meta-Modelling. PhD thesis, Humboldt Univer-
sität zu Berlin (October 2008)

8. Steinberg, D., et al.: EMF: Eclipse Modeling Framework 2.0.
Addison-Wesley Professional (2009)

9. Ebert, J., Riediger, V., Winter, A.: Graph Technology in Reverse
Engineering, The TGraph Approach. In Gimnich, R., Kaiser, U.,
Quante, J., Winter, A., eds.: 10th Workshop Software Reengineering
(WSR 2008). Volume 126., Bonn, GI (2008) 67–81

10. Amelunxen, C., Bichler, L., Schürr, A.: Codegenerierung für Assozi-
ationen in MOF 2.0. In: Proc. Modellierung 2004. Volume P-45 of
Lecture Notes in Informatics., Bonn, Gesellschaft für Informatik (3
2004) 149–168

11. Amelunxen, C., Schürr, A.: Vervollständigung des Constraint-
basierten Assoziationskonzeptes von UML 2.0. In Mayr, H., Breu,
R., eds.: Proc. Modellierung 2006. Volume P-82 of Lecture Notes in
Informatics., Bonn, Gesellschaft für Informatik (2006) 163–172

12. Amelunxen, C., et al.: MOFLON: A Standard-Compliant Meta-
modeling Framework with Graph Transformations. In Rensink, A.,
Warmer, J., eds.: Model Driven Architecture - Foundations and Ap-
plications: Second European Conference. Volume 4066 of Lecture
Notes in Computer Science., Heidelberg, Springer (2006) 361–375

13. Kalnins, A., Celms, E., Sostaks, A.: Tool support for MOLA. Elec-
tronic Notes in Theoretical Computer Science 152 (2006) 83–96

14. Büttner, F., Gogolla, M.: On generalization and overriding in UML
2.0. In Patrascoiu, O., ed.: OCL and Model Driven Engineering,
UML 2004 Conference Workshop, University of Kent (2004) 1–15

15. Ducournau, R.: Real world as an argument for covariant special-
ization in programming and modeling. In: OOIS ’02: Proceedings
of the Workshops on Advances in Object-Oriented Information Sys-
tems, London, UK, Springer-Verlag (2002) 3–12

16. Olivé, A.: Conceptual Modeling of Information Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (2007)


