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Abstract. Context and motivation: Providing precise definitions of all
project specific terms is a crucial task in requirements engineering. In
order to support the glossary building process, many previous tools rely
on the assumption that the requirements set has a certain level of quality.
Question/problem: Yet, the parallel detection and correction of quality
weaknesses in the context of glossary terms is beneficial to requirements
definition. In this paper, we focus on detection of uncontrolled usage
of abbreviations by identification of abbreviation-expansion pair (AEP)
candidates. Principal ideas/results: We compare our feature-based ap-
proach (ILLOD) to other similarity measures to detect AEPs. It shows
that feature-based methods are more accurate than syntactic and seman-
tic similarity measures. The goal is to extend the glossary term extrac-
tion (GTE) and synonym clustering with AEP-specific methods. First
experiments with a PROMISE data-set extended with uncontrolled ab-
breviations show that ILLOD is able to extract abbreviations as well as
match their expansions viably in a real-world setting and is well suited
to augment previous term clusters with clusters that combine AEP can-
didates. Contribution: In this paper, we present ILLOD, a novel feature-
based approach to AEP detection and propose a workflow for its inte-
gration to clustering of glossary term candidates.

Keywords: Requirements Engineering · Glossary Term Extraction ·
Abbreviation-Expansion Pair Detection · Synonym Detection.

1 Introduction

One of the goals in requirements engineering is to improve an opaque system
comprehension into a complete system specification [28]. Activities related to
glossary building support that goal, since glossaries serve to improve the accuracy
and understandability of requirements written in natural language [3].
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According to the International Requirements Engineering Board (IREB) [12],
a glossary is a collection of definitions of terms that are relevant in a specific
domain. In addition, a glossary frequently contains cross-references, synonyms,
homonyms, and abbreviations [12]. Glossaries serve to enrich the requirement
texts with additional important information, which ensures that technical terms
are used and understood correctly, and supports communication among project
participants [19]. The consequent use of a complete and accurate glossary leads to
a more consistent language, resulting in coherent structures for the requirements,
which in turn enhances automatic analysability [8,26]. Finally, a glossary can
be reused for future projects within the same application domain to facilitate
requirements elicitation and analysis [18].

In order to obtain the mentioned benefits, a glossary should be developed
during the requirements elicitation phase, which is also compliant to best prac-
tices [19,27]. For various reasons, many projects tend to build their glossary
after the requirements elicitation phase [1,2,11]. However, this complicates the
task, since requirements written without the use of a glossary are more likely
to contain imprecise or ambiguous wordings. When multiple terms are used to
refer to the same meaning (synonyms), denote specializations (hyponyms), or
terms have multiple meanings (homonyms), this presents a major challenge for
the identification of glossary terms. Therefore, beforehand, the analyst has to en-
sure that the terminology is used consistently, e.g. through syntactic or semantic
adjustments. This task affects various inter-requirement relations in parallel.

With this paper, we present an approach that encourages the analyst to start
with the glossary building, even when the requirements quality still shows weak-
nesses, and contributes to resolve two tasks in parallel: (1) quality improvement
through reduction of lexical variation and (2) glossary term identification. In
particular, we integrate the detection of abbreviations and their expansions.

2 Problem Definition

We briefly focus on the main problems to be solved by an automated tool for
the identification of glossary terms (GTE) [3,8,11].

First, since 99% of glossary entries are noun phrases (NPs) [14,17]:

(A) A GTE tool needs to have an accurate noun phrase detection.

Second, as glossaries deal with domain specific terms and omit duplicates:

(B) A GTE tool needs to filter detected NPs to glossary term candidates.

Considering (A), Natural Language Processing (NLP) pipelines for noun
phrase detection, e.g., through chunking approaches, are shown to be effec-
tive [1,2]. As such, in this paper we focus on devising an effective technique
for (B). Here, statistical filters composed of specificity and relevance measures,
as presented by Gemkow et al. [11], could be used, in which beforehand identifi-
cation of homonyms, synonyms, and different spelling variants among detected
noun phrases is expected to have a positive effect on accuracy. Since we explicitly
consider requirement sets with such quality weaknesses, we first focus on:
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(B1) A GTE tool needs to identify and/or merge homonyms, synonyms, hy-
ponyms and different spelling variants among detected noun phrases.

To detect such relations among domain terms is also beneficial for the build-
ing of initial domain models. In order to check whether a given pair of terms is
synonymous, homonymous, or hypernymous, the underlying concepts themselves
must be disambiguated [14], which requires good knowledge about the relevant
domain. Therefore, candidate term pairs still have to be confirmed or rejected by
the analyst. To keep the manual effort low, term clusters are a suitable method
of representation [2]. A cluster of size n can combine (n(n − 1))/2 term pairs.
For example, the REGICE tool [2] follows a synonym clustering approach. Yet,
only context-based (semantic) and text-based (syntactic) similarity [34] are con-
sidered and abbreviations must have been cleaned up and defined beforehand.
Homonyms and hyponyms are not explicitly addressed. Yet, they can be spotted
as bycatch. However, for homonyms this is only the case for non-disjoint clusters.

For higher recall in synonym detection, additionally pattern-based similar-
ity [34] for controlled abbreviations can be applied. It refers to clauses where
abbreviations are defined by their corresponding expansions using parentheses
or keywords such as “also known as”, “abbreviated” and “a.k.a.”, e.g.,

– Common Business Oriented Language abbreviated COBOL
– AES (Advanced Encryption Standard)
– Compression / Decompression, also known as Codec

More interesting, however, is an algorithm that also supports to resolve un-
controlled abbreviations, which are not defined in place when they are used.
Uncontrolled abbreviations in requirements are rather common, especially when
requirements elicitation is carried out by different persons (in different organi-
zations) and when guidelines for the use of abbreviations are missing or not
followed. Abbreviations can be homonymous by having multiple possible expan-
sions within the same requirements set, as they are predominantly used in a
project- or domain-specific context, and new projects regularly come up with
new word creations. Thus, simple look-up techniques on predefined lists are not
sufficient. This leads us to the next problem statement:

(B1.1) A GTE tool needs to exploratorily resolve hitherto unknown abbrevia-
tions in comparison to other terms present in the given text.

Since the abbreviation list is part of the glossary, both should be built in par-
allel. The goal is to enable a specific synonym detection optimized for matching of
abbreviations with their expansions, which can be integrated to the clustering in
glossary term extraction (GTE) tools. For that, we first compare the accuracy of
syntactic and semantic similarity measures with feature-based classification ap-
proaches applied to abbreviation-expansion pairs (AEPs). Further, we introduce
ILLOD, a binary classifier extending the algorithm of Schwartz and Hearst [31].
It checks Initial Letters, term Lengths, Order, and Distribution of characters.
Finally, we propose how tools like ILLOD can be integrated into the clustering
of glossary term candidates.
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3 Related Work

For glossary term extraction (GTE), Gemkow et al. [11] showed how to reduce
the number of glossary term candidates by using relevance and specificity fil-
ters. Improving the precision of glossary term extraction like this is important
especially for large data-sets. Yet, they do not regulate the possible presence of
synonyms and homonyms when determining term frequencies.

Arora et al. [2] argue that clustering of glossary term candidates has the
advantage to better mitigate false positives from noun phrase detection (A) and
to support candidate filtering (B). In addition, their approach provides guidelines
on how to tune clustering for a given requirements set, to detect synonyms with
high accuracy. They conclude that disjoint clusters should be produced in order
to keep the workload for term identification low. In Section 6 of this paper, we
look at this from a new perspective.

There are various approaches for the extraction and recognition of abbreviati-
on-expansion pairs (AEPs). In addition to statistical [24,36] and rule-based meth-
ods [29,32], there are also machine learning methods [35]. Many publications deal
with biomedical texts and a few, like Park et al. [25], with the field of computer
science. Most work assumes that AEPs are predefined in the text via certain
patterns and focus their analyses on the surrounding context of the detected ab-
breviations, which is also the case for Schwartz and Hearst [31]. In our work, we
extend the algorithm findBestLongForm presented by Schwartz and Hearst [31]
to make it applicable for cross-comparisons where an abbreviation and its expan-
sion may occur in different sentences/requirements and are distributed over the
given text. We also show that this extension—ILLOD—can be used beneficially
in extraction and identification of requirements glossary terms.

4 Abbreviation Detection

The first step to AEP-matching is the identification of abbreviations. Since “[t]he
styling of abbreviations is inconsistent and arbitrary and includes many possible
variations” [21], abbreviation extraction is usually achieved by finding single
words that are relatively short and have several capital letters [20,31,33]. This
way, not only acronyms are addressed, but also other forms of abbreviations.

For this task, we implement a simple detection algorithm. It returns “true”
for a given word w, if the capital letter portion and the word length exceed
respectively fall below specified parameter values, otherwise it returns “false”.
We test this method on a cleaned list of 1786 abbreviation-expansion pairs known
from the field of information technology [7]1 with abbreviations of different styles.
We reference this list with L, all abbreviations a ∈ L with A, and all expansions
e ∈ L with E. To identify suitable parameters for word length and the proportion
of capital letters, we perform F1-optimisation through an exhaustive search on
all possible combinations of the two parameters. The search is conducted in the

1 For reproduction purposes, this list is also included in the supplemental material [13].
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range from 0.01 to 1.0 (in 1/100 steps) for the capital letter portion parameter
and from 1 to 20 for the word length parameter. The algorithm is once tested
on all a ∈ A and once on all e ∈ E to obtain false negative and false positive
assignments respectively.

After optimization, with word-length <= 13 and proportion of capital
letters >= 0.29 we achieve Precision = 0.922, Recall = 0.923, and F1 = 0.922.
On full written text, to keep such high accuracy, we apply an additional stop
word filter sorting out words whose lower case matches a stop word and which
only have one uppercase letter, as first letter, e.g. “The”, “Any”, or “If”.

5 Detection of AEP Candidates

For AEP detection, different types of similarity measures are eligible. In a nut-
shell, words are semantically similar if they have the same meaning and syntac-
tically similar if they have a similar character sequence [10]. Semantic measures
rely on data from large corpora or semantic nets —models of terms and their
relations, whereas “syntactic measures operate on given words and their charac-
ters without any assumption of the language or the meaning of the content” [10].
Finally, feature-based similarity rates features that are common to a given pair of
words, e.g. the order of certain letters. Below, we compare three different types
of classifiers for AEP detection based on these three types of similarity measures.

5.1 AEP Detection with Semantic Similarity Measures

Most methods to semantic similarity need to know queried terms in advance.
This applies to knowledge-based methods that rely on lexical databases such
as WordNet [23] and corpus-based methods such as Word2vec [22]. As a result,
these methods are not suitable to solve (B1.1). Thus, we chose FastText (FT) [4]
as a generic approach and state-of-the-practice technique to assess the suitability
of semantic similarity methods for AEP detection. To assign an abbreviation a to
a potential expansion t in the upcoming evaluation, our simple semantic classifier
returns whether

cosine similarity(embedFT (a), embedFT (t)) ≥ threshold,

where the cosine similarity for two vectors x and y is defined as xT y
‖x‖‖y‖ , and

embedFT stands for embedding with FastText.

5.2 AEP Detection with Syntactic Similarity Measures

The second type of classifier uses syntactic similarity measures between a and
t. For this, several measures, as summarized by Gali et al. [10], can be used,
like Levenshtein-Distance (LD)2, Jaro-Winkler-Similarity (JWS), an extension

2 We do not choose the extended Damerau–Levenshtein-Distance as it considers trans-
positions and LD is therefore more sensitive to changes in the sequence of letters.
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of Jaro-Similarity, and the Dice-Coefficient (DC). However, the use of syntactic
similarity measures to detect AEPs is limited. Typically, abbreviations contain
only a small proportion of the letters of their respective extensions. E.g., the pair
(“ISO”, “International Organization for Standardization”) has only a share of
3/14 common characters compared in lower case. This is also reflected in Table 1,
where the similarities between randomly selected pairs from L are rather low.

Table 1. Syntactic and semantic similarities between randomly chosen AEPs (a, e) ∈ L
*Distance measures d normalized to similarity in [0, 1] by 1−(d(a, e)/max(|a|, |e|)) [10]

Abbreviation-Expansion Pair (a, e) LD* JWS DC FT

(LED monitor, Ligth-emitting diode) 0.15 0.435 0.818 0.30

(Int, integer) 0.286 0.651 0.667 0.20

(PS/2, Personal System/2) 0.235 0.436 0.444 0.19

(IANA, Internet Assigned Numbers Authority) 0.114 0.612 0.316 0.093

(SMM, System Management Mode) 0.136 0.586 0.307 0.142

(U/L, upload) 0.0 0.0 0.444 0.025

(IAP, Internet access provider) 0.042 0.458 0.375 0.06

(CLNS, connectionless network service) 0.0 0.0 0.471 0.076

(MMC, MultiMediaCard) 0.214 0.603 0.333 0.533

(I/O, input/output) 0.083 0.472 0.6 0.147

Table 2. Average syntactic similarities for all (a, e) ∈ L and (a, â) with â = potAbb(e)
*Distance measures d normalized to similarity in [0, 1] by 1−(d(a, x)/max(|a|, |x|))[10]

Compared Pairs LD* JWS DC with pre-processing

(a, e)
0.092 0.309 0.419 no
0.183 0.637 0.422 yes

(a, â)
0.361 0.422 0.861 no
0.797 0.896 0.865 yes

To overcome this difficulties, the matching between an abbreviation a and
some possible expansion t can be estimated by creating a potential abbreviation
â = potAbb(t) out of the initial letters of the single tokens of t. Similarity is
then measured between a and â. This contraction allows to compare a and t on
a homogeneous representation level. Table 2 summarizes the average values of
the syntactic comparisons between (a, e) as well as (a, â) for all pairs (a, e) ∈ L,
where â = potAbb(e) following the just mentioned contraction approach.

Further, we apply pre-processing by converting the string into lower case
letters, removing punctuation marks and the stop words “for”, “and”, “of”,
“in”, “via” and “be”. Table 2 shows, that pre-processing and contraction have a
positive effect for all three examined measures. For (a, e), the average (normal-
ized) Levenshtein-Distance improves by 0.705, average Jaro-Winkler-Similarity
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by 0.587, and the average Dice Coefficient by 0.446. Thus, with ac = preprocess(a)
and tc = preprocess(t), the second type of classifiers returns whether

syntacticSimilarityMeasure(ac, potAbb(tc)) ≥ threshold.

Although abbreviations usually have short length—in our dataset the average
after pre-processing is 3.55—it can be assumed that â and a still differ in many
cases despite pre-processing. For the Levenshtein-Distance, there is a relative
difference of 20.3% in average between â and a even after pre-processing, which
shows that, as assumed [21], the formation and use of abbreviations in computer
science is not subject to fixed guidelines/regulations in practice. Even though
the average Jaro-Winkler-Similarity and the average Dice-Coefficient-Similarity
are close to their ideal value of 1.0, they are potentially prone to many false
positive assignments. We address this assumption in Section 5.4.

5.3 AEP Detection with Feature-Based Similarity Measures

The third type of classifier is represented by ILLOD, an extension of the algo-
rithm findBestLongForm [31] that we implemented in Python. Whether (a, t) is
a candidate AEP is decided by ILLOD solely on the basis of features of a and
the words in t. Thus, it is a feature-based approach, although each feature is
identified using conditional rules. Algorithm 1 specifies ILLOD in pseudo-code:

Algorithm 1: ILLOD

1 ac = preprocess(a); tc = preprocess(t);
2 if check initial letters(a, t) then
3 return True ;
4 else if check initial letters(ac, tc) then
5 return True ;
6 else if check order(ac, tc) and compare lengths(ac, tc) and

check distribution(ac, tc) then
7 return True ;
8 else
9 return False ;

The method check initial letters(a, t) examines for all letters in a whether
they correspond to the initial letters of the words in t. Thus, the calls in lines 2
and 4 check intuitively if the expansion fits the abbreviation, but have difficul-
ties with pairs like (“QnA”, “Questions and Answers”). To solve this, in line 6
additional features are evaluated:

check order(a, t) examines if the order of the letters in a can also be found in
t and if the initial letters of a and t correspond. Based on Schwartz and
Hearst [31], we compare the letters in backward reading direction to favour
an even distribution of the letters over the words of the expansion.
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compare lengths(a, t) checks whether the length (count of letters) of a is ≥ the
number of words in t. This sorts out pairs like (“A”, “Advanced Configura-
tion and Power Interface”), based on the assumption that a should reference
as many words in t as possible.

check distribution(a, t) tests if the letters from a, if present in t, are uniformly
distributed over the words in t, to sort out pairs like (“SMS”, “Systems
Network Architecture”) or (“PaaS”, “Palo Alto Research Center”).

5.4 Evaluation of the Approaches on a Synthesized Data-Set

To estimate the accuracy of AEP detection approaches, a data-set D is needed
that contains incorrect and correct AEPs. For this purpose, we compiled D as
D = L ∪ S, where L corresponds to the list from Section 4 and S consists of
the pairs (a, e) in which a random element e from E was assigned to a given
abbreviation a, not matching the real abbreviation of e. To be more formal, the
set S can be described as S = {(a, e) | a ∈ A, e ∈ E, (a, e) /∈ L}.

While |L| = 1786, S grows to |S| = 2 710 125. S could be reduced by filtering
to pairs with identical initial letter. However, since L contains AEPs in which the
initial letters differ, this option is discarded. Since we aim to test on a balanced
data-set, where the proportion of abbreviations among all terms approximately
corresponds to that in requirement texts, we test the presented approaches on
different Dα = L∪Sα, where Sα ⊂ S is randomly chosen from S each time, under
the condition that |Sα| = α∗|L|. To obtain an estimate for α, we extract 3195 NPs
from 1102 requirements from ten projects of the PURE data-set [9]. To increase
the recall, all words (not only words in NPs) are checked by our extraction rules
from Section 4. In total, we extract 138 abbreviations and therefore estimate
α = 3195/138 = 23.152. Since requirement sets vary in use of abbreviations,
several values for α (8, 16, 24, 48, 72) are considered. To avoid disadvantages
for classifiers based on syntactic and semantic similarity, threshold values are
F1-optimized for all α, given as thold in Table 3.

Table 3. F1 performance of AEP detection for different α. Sem (FT) corresponds to
the semantic classifier in Section 5.1, Syn corresponds to the different variants of the
syntactic classifier in Section 5.2 and Feat (ILLOD) corresponds to the feature-based
classifier in Section 5.3. Best thresholds are given in the thold columns.
*Normalised LD: LD∗(a, t) = 1− (LD(ac, potAbb(tc))/max(|ac|, |potAbb(tc)|)) [10]

α = 8 α = 16 α = 24 α = 48 α = 72
Classifier F1 thold F1 thold F1 thold F1 thold F1 thold

Sem FT 0.287 0.13 0.191 0.13 0.146 0.16 0.088 0.16 0.064 0.18

Syn
LD* 0.861 0.55 0.841 0.54 0.825 0.52 0.780 0.70 0.776 0.68
JWS 0.874 0.73 0.849 0.79 0.831 0.79 0.800 0.79 0.778 0.84
DC 0.841 0.75 0.811 0.79 0.789 0.77 0.746 0.82 0.723 0.85

Feat ILLOD 0.948 - 0.942 - 0.937 - 0.917 - 0.900 -
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The results in F1-scores summarized in Table 3 show that the FastText-based
classifier performs poorly. This might be because a word embedding obtained
from FastText can only inaccurately represent a certain word sense if the cor-
responding abbreviation has multiple expansions with heterogeneous meanings.
Classifiers based on syntactic similarity measures have F1-scores between 72 and
87% — on average 80%, but are outperformed by ILLOD, which has between 90
and 94%. In the majority of cases, ILLOD achieves higher precision and recall
at the same time. With increasingly larger α (= 48, 72), a weakening of the pre-
cision for ILLOD becomes apparent. Here, it is surpassed by the LD classifier.
However, ILLOD is able to retain the best F1-score across all α thanks to its
consistently high recall in particular. While Table 3 only states F1-scores, these
more detailed results can be obtained within supplemental material [13].

5.5 Evaluation of the Approaches on a Requirements Data-Set

We evaluate the practicability of ILLOD for the intended use case with require-
ments from 15 projects comprised in a PROMISE [30] data-set [5,37]. In order
to simulate their uncontrolled usage, 30 undefined abbreviations are inserted as
replacements for written-out terms into various requirements. Only terms that
appear in at least two requirements are abbreviated in at most one of those.
No further guidelines for abbreviation are followed and different styles, not only
acronyms, are used. This is performed by an independent person, not involved
in this work and without the knowledge of the authors.

We read in the modified data-set as CSV-file. In independent runs, first ab-
breviations, as described in Section 4, and then ordinary terms without undefined
abbreviations (OT), obtained through noun-chunk extraction [2], are gathered.
In the next step, ILLOD is used to determine AEP-candidates by pairwise com-
parison of the abbreviations with the ordinary terms. The pairs created this way
are then merged to AEP groups—clusters of exactly one abbreviation and all
its potential expansions. For the modified PROMISE data-set, ILLOD creates
115 term tuples, combined to 51 AEP groups. Subsequently, this list of all deter-
mined AEP candidates is compared with the actual replacements. As a result,
the extraction approach detects 29 of 30 inserted abbreviations and ILLOD is
able to indicate the correct expansions for 25 of them.

We performed the same experiment with the semantic and syntactic clas-
sifiers. The results show that the other classifiers generate more than twice as
many term tuples (AEP candidates) compared to ILLOD in order to indicate
the correct expansion for fewer abbreviations—at maximum 22. Detailed results
can be found again in the supplemental material [13].

6 Integration into Clustering Workflow

On the lines of Wang et al. [34], the preceding results confirm that different
types of synonyms require different adapted approaches to calculating similarity,
in particular for AEP-detection. Before we describe how AEP-specific methods
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like ILLOD can be integrated into clustering of GTE tools, it is necessary to
discuss how to ensure that the clusters created are meaningful and useful.

Arora et al. [2] create an ideal cluster solution from a given domain model
against which the clusters obtained by different clustering algorithms have to
be measured/compared/evaluated. We adopt this guiding principle in order to
find a good strategy for the integration of ILLOD. We do not intend to evaluate
different clustering algorithms, but rather to show how two already optimized
clustering results—one for ordinary terms according to Arora et al. [2] and one
for AEP groups—can be merged. To do so, some theoretical considerations on
how ideal clusters can be constructed for this are required.

6.1 Ideal Clustering Solution

Arora et al. [2] create ideal clusters around a single concept c from the domain
model, where the clusters also contain variants of terms that are conceptually
equivalent to c and terms that are related to c according to the domain model.

Terms within individual AEP groups have a different relation to each other—
indicating that two terms can be used as an expansion/definition for the same,
as yet undefined, abbreviation. Thus, AEP groups differ in type from the ideal
clusters of Arora et al. [2]. As AEP groups are designed to indicate probable
ambiguities, they should not be separated in an ideal cluster solution.

As the ordinary terms within the individual AEP groups do not have to
be conceptually related to each other according to the domain model, we must
assume that they are distributed over the different clusters of the ideal clusters.

AR

audit 
report adjuster 

role

adjuster

available part

available online time

audit

appearance

appearance 
of product

availability schedule

Recycled part audit

total score 
of audit

corporate online 
availability schedule

corporate color 
scheme

Fig. 1. Glossary term clusters of ordinary terms (grey) and overlay cluster for abbre-
viation “AR” and its possible expansions (blue) for a “vehicle parts finder system”.
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This leads to the conclusion that AEP groups in an ideal cluster solution
must be considered as so-called overlay clusters, which implies that the AEP
groups are included as additional clusters. Fig. 1 shows an example for this,
based on the requirements from a “Vehicle Parts Finder System” part of the
PROMISE data-set [5] as project #5.

6.2 GTE Processing Steps

Considerations from the previous section lead us to propose the approach for
the integration of ILLOD into a given GTE tool, as outlined in Fig. 2.

First, abbreviations are extracted from the given text, as described in Sec-
tion 4 and then reduced to only consider yet undefined ones. Further, general
glossary term candidates are extracted, e.g., through noun-chunking, and then
cleaned from the abbreviations to a set of ordinary terms. ILLOD is then used
to cluster abbreviations with their potential expansions into AEP groups, while
a general synonym clustering approach, such as presented by Arora et al. [2], is
used to cluster the ordinary terms.

As AEP groups are added into the final cluster solution in the last step,
this will produce overlapping clusters. To evaluate the solutions generated by
this approach, in addition to an ideal cluster solution, a metric is required to
determine the score of agreement between an overlapping clustering solution and
an overlapping ground truth—the ideal cluster solution. The OMEGA-Index Ω,
a metric based on pair counts, introduced by Collins et al. [6], can achieve this.

Another argument for generating disjoint clusters of ordinary terms in the
second-last step, besides the ones given by Arora et al. [2], is indicated by Ω. It
shows the difficulty of making overlapping cluster solutions more similar to the
ground truth clustering. For calculation, Ω uses the contingency table C. The
entries ci,j ∈ C indicate the number of all pairs that appear in exactly i clusters in
the solution and in exactly j clusters in the ground truth. A necessary condition
to increase Ω between a generated cluster solution and a given ground truth is to
modify the cluster solution so, that their agreement (sum of all diagonal values in
C) is increased and their disagreement (sum of all values outside the diagonal)
is decreased. Finally, an enlargement of the matrix would cause only a linear
increase in the number of agreement fields, while the number of disagreement
fields increases quadratically. Therefore, we propose the combination of disjoint
clustering with separately calculated AEP group overlay clusters as introduced
in Section 6.1.

7 Discussion

In the following, we discuss limitations and potential threats to validity [15] of
our ILLOD approach to AEP detection, its evaluation, as well as considerations
on its strengths and its integration to glossary term candidate clustering.

Repeatability We provide our source code and data-sets, as well as additional
evaluation data [13] for replication.
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Extract set of abbreviations𝑨𝑨 (see Section 4) 

Reduce𝑨𝑨 to undefined abbreviations

Extract set of glossary term candidates 𝑻𝑻
(as textual normalizations of noun phrases through noun-chunking [2])

Filter out t from𝑻𝑻 to form 𝑶𝑶𝑻𝑻
𝑶𝑶𝑻𝑻 = 𝒕𝒕 ∈ 𝑻𝑻 𝒂𝒂 ∉ 𝒕𝒕 ∀𝒂𝒂 ∈ 𝑨𝑨}

Generate an AEP group 𝑮𝑮𝒂𝒂 of possible expansions t ∈𝑶𝑶𝑻𝑻 (via ILLOD)
𝑮𝑮𝒂𝒂 = 𝒂𝒂 ∪ 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑶𝑶𝑰𝑰𝒂𝒂 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑶𝑶𝑰𝑰𝒂𝒂 = {𝒕𝒕 ∈ 𝑶𝑶𝑻𝑻|𝑰𝑰𝑰𝑰𝑰𝑰𝑶𝑶𝑰𝑰 𝒂𝒂, 𝒕𝒕 = 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻}

Extend 𝑮𝑮𝒂𝒂 with 𝒕𝒕
𝑮𝑮𝒂𝒂 = 𝒂𝒂 ∪ 𝑻𝑻𝑰𝑰𝑰𝑰𝑰𝑰𝑶𝑶𝑰𝑰𝒂𝒂 ∪ 𝑻𝑻𝒂𝒂 𝑻𝑻𝒂𝒂 = 𝒕𝒕 ∈ 𝑻𝑻 ∖ 𝑶𝑶𝑻𝑻 𝒂𝒂 ∈ 𝒕𝒕}

Generate disjoint clusters for the ordinary terms from𝑶𝑶𝑻𝑻 (e.g. according to Arora et al. [2])

Add AEP groups as additional clusters to the clusters of ordinary terms

For 𝒕𝒕 ∈ 𝑻𝑻

[𝒕𝒕 contains
some 𝒂𝒂 ∈ 𝑨𝑨] 

iterative

[else]

For 𝒂𝒂 ∈ 𝑨𝑨

For 𝒕𝒕 ∈ 𝑻𝑻

[𝒕𝒕 contains a  and t ∉ 𝑶𝑶𝑻𝑻]

iterative

iterative
[else]

Fig. 2. Proposed workflow for the integration of ILLOD into a given GTE tool

Construct Validity Regarding (B1.1) threats are neglectable, as we directly
work on extracted terms obtained via well known and reliable NLP techniques,
and parameters for the identification of abbreviations are retrieved from real
world examples and can be adjusted to fit domain specific peculiarities. Towards
the more general (B1), homonyms and hyponyms are not detected explicitly.
Yet, the analyst might be enabled to spot some during manual inspection of the
clusters, although in general this problem needs to be addressed in a separate
solution. However, focus of this work is on abbreviations, as defined in (B1.1).



AEP-Detection for GTE 13

Internal Validity To minimize the risk of threats, we tested the similarity
measures and classifiers with the same cleaned list of defined abbreviations and
under several portions α of abbreviations within the text. Semantic and syntactic
similarity measures, are tested with different thresholds.

External Validity Parameters and features for abbreviation detection might
be context and language specific. E.g., two examples from the German armed
forces to abbreviate a unit of organization and an employment title exceed the
limits of our detection: First, (“SABCAbwGSchAufg”, “Schule ABC-Abwehr
und Gesetzliche Schutzaufgaben”) is with 15 letters longer than our limit of 13.
Second, (“Schirrmstr”, “Schirrmeister”) has with 0.1 a too low portion of capital
letters—this is presumably typical for simply truncated words. It shows that
parameters need to be adjusted or some specific rules have to be added for
domains with notably different guidelines. The list we used [7] is open community
built without guidelines and thus heterogeneous abbreviation styles not limited
to acronyms. Yet, it is domain specific. Further, we only used English terms.
Parameters and accuracy might vary for other languages, e.g. in German rules
for noun-splitting differ. However, parameters can be easily adapted through
optimization on other data-sets. Similar, features evaluated by ILLOD can be
easily adapted to domain specific patterns. Yet, the tests on the PROMISE
data-set with requirements from 15 projects from different domains, indicate
some general applicability. We plan to verify our approach on further data-sets
in future research.

Conclusion Validity To mitigate threats, the modifications to the PROMISE
data-set as well as the evaluation of detection results is conducted by an external
independent person without exposure of details to the authors.

The considerations on cluster integration are based on related work [2] and
initial experiments on optimization of different clustering algorithms with the
OMEGA-Index. However, we plan to substantiate this in future experiments.
Based on our findings, the proposed workflow has the following advantages:

(1) By using AEP groups, we avoid to decide which pair of terms belong together
automatically, which is a challenging problem according to Jiang et al. [16].

(2) AEP groups have ergonomic as well as procedural advantages:
(a) The analyst is motivated to build the list of abbreviations in parallel.
(b) The analyst has direct insight into how an abbreviation could be ex-

panded alternatively, as alternative expansions are likely to be encoun-
tered in the same cluster, and thus the analyst gets another opportunity
to reduce ambiguities.

(3) Since the AEP groups are added to the generated cluster of ordinary terms
in a post-processing step from a clustering point of view, the AEP groups
ensure that unknown abbreviations and proposed expansions are placed in
the same cluster, regardless of the clustering algorithm.

(4) Adding additional AEP groups lead to a final result with overlapping clus-
ters, but mitigates the disadvantages of such, as these additional clusters are
of different type than those of the ordinary terms.

(5) Using a feature-based approach to AEP detection, as ILLOD, provides high
flexibility to adjust to domain specific rules, as new rules can easily be added.
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We further conducted preliminary experiments with hybrid approaches to
AEP detection, combining different types of classifiers. For example, to check the
initial letter equivalence rule contained in ILLOD in a pre-processing step for all
syntactic measures. This leads to increased accuracy for this type of classifier, as
can be learned from the detailed evaluation data [13]. However, due to the nature
of feature-based approaches of combining and potentially weighting different
rules/features, it appears to be more plausible, to potentially integrate syntactic
measures as additional rules here, rather than to outsource other features to
excessive pre-processing.

8 Conclusions

Early glossary building and synonym detection is relevant to reduce ambiguity
in requirements sets, e.g. through definition of preferred terms [14]. We demon-
strate that different types of synonyms [14] need different treatments in detec-
tion. In particular, classical syntactic and semantic similarity measures perform
poorly on abbreviations, as we show with our experiments in Section 5. With
our ILLOD tool, we present a new feature based approach to AEP detection,
which outperforms those classic approaches. It is also more flexible, as rule sets
can be easily adapted to context specific characteristics, e.g. guidelines or other
languages. Initial experiments indicate that investigation of hybrid approaches
might be promising, though. We further propose how to integrate groups of ab-
breviations and their potential expansions to clusters of ordinary glossary term
candidates as additional separate type of clusters.

This enables analysts to build the abbreviation list in parallel to the glossary
and start this process early already on preliminary requirements. Further, we
assume our approach not only to be relevant for early harmonization of require-
ments document terminology, but also if glossary and abbreviation list have to be
built over several documents spanning multiple project phases and/or involved
organizations and domains. In addition, different clusters for different synonym
types can support the building of synonym groups for glossaries or thesauri with
cross references [14] and context specific grouping as well as domain models.
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