
Reverse Engineering Using Graph Queries

Jürgen Ebert, Daniel Bildhauer
University of Koblenz-Landau
{ebert,dbildh}@uni-koblenz.de

Abstract

Software Reverse Engineering is the process of extracting (usually more abstract)
information from software artifacts. Graph-based engineering tools work on fact
repositories that keep all artifacts as graphs. Hence, information extraction can
be viewed as querying this repository. This paper describes the graph query
language GReQL and its use in reverse engineering tools.

GReQL is an expression language based on set theory and predicate log-
ics including regular path expressions (RPEs) as first class values. The GReQL
evaluator is described in some detail with an emphasis on the efficient evalua-
tion of RPEs for reachability and path-finding queries. Applications for reverse
engineering Java software are added as sample use cases.

1 Introduction

In software engineering, modeling is the process of abstracting parts of reality
into a representation that abstracts from unnecessary details and allows auto-
matic processing. Models may be either descriptive, if they represent existing
artifacts, or prescriptive, if they are used as a blueprint for artifacts to be con-
structed.

In the domain of software engineering tools, a modeling approach for software
engineering artifacts has to be chosen. The earliest tools for handling software
artifacts were compilers which extracted tree models from program artifacts by
a combined procedure of scanning and parsing, leading to abstract syntax trees
as program models. Trees are easily representable in main memory, and there
are many efficient algorithms for handling trees.

In general, trees are not powerful enough to keep all the necessary informa-
tion about software engineering artifacts in an integrated form. As an example,
definition-use chains or other additional links between the vertices of a syn-
tax tree lead to more general graph-like structures. As a consequence of these
shortcomings of trees Manfred Nagl [Nag80] proposed to use graphs to repre-
sent source code in compilers and beyond that for all other artifacts in software
engineering environments.

In this paper, the TGraph approach to graph-based modeling [ERW08] is
used to model software artifacts in software engineering tools. The generic graph
query language GReQL is introduced which supports information extraction
from graph repositories. An overview on GReQL is given and its central feature,



the regular path expressions, is described in more detail. The focus is on the
evaluation of path expressions to derive reachability and path information.

Section 2 describes the use of TGraphs as software models, Section 3 summa-
rizes the necessary definitions on graphs and regular expressions, and Section 4
introduces the query language GReQL. In Section 5 the range of regular path
expressions supported by GReQL is introduced, and the algorithms for evaluat-
ing these expressions are described in detail. Section 6 gives some examples of
GReQL queries in reverse engineering, Section 7 discusses related work including
some performance data, and Section 8 concludes the article.

2 Software

A software system does not only consist of its source code, but also of all other ar-
tifacts that are constructed and deployed during its development and its usage.
These additional artifacts comprise a wide range of documents from require-
ments specifications, design and architecture models, to test cases and instal-
lation scripts. These artifacts are written in many different languages, some of
them being of textual form others being visual diagrams. Some of them have a
formal semantics others remain completely informal.

Graph Representation. To treat such a heterogeneous set of artifacts simulta-
neously in one tool environment, a common technological space is needed which
is equally well-suited for storing, analyzing, manipulating and rendering them.
Furthermore, it should be possible to also handle inter-artifact links, such as
traceability information.

Regarding the work of Manfred Nagl and others, graphs form a good basis for
such a technological space, since they are simultaneously able to model structure
in a generic way and to also keep application-specific additional knowledge in
supplementary properties like e.g. attributes.

Generally, every relevant entity in a software artifact can be modeled by
a representative vertex that represents this entity inside a graph. Then, every
(binary) relationship between entities can be modeled by an edge that carries all
information relevant for this relationship. Note that the occurrence of an object
o in some context c is a relationship in this sense, whereas o and c themselves
are entities. Thus, occurrences of software entities in artifacts can be modeled
by edges between respective vertices.

Example. As an example for the representation of a software artifact as a graph,
the following listing shows a simple Java data structure for binary trees. Using a
parser, this code can be transformed into an abstract syntax graph (ASG), which
consists of about 75 vertices and 100 edges for the code shown, if a fine-granular
model is built.



Listing 1.1. ”Java implementation of a binary tree”� �
1 class Node {
2 String data;
3 Node left, right;
4

5 public Node(String s) { data = s; }
6

7 public void add(String s) {
8 if (s.compareTo(data) < 0) {
9 if (left != null) left.add(s);

10 else left = new Node(s);
11 } else ...
12 }
13 } 	� �

Fig. 1. Extract of the ASG for the class Node from listing 1.1

For brevity reasons, Figure 1 shows only a part of this graph, namely the
definition of the class and its data attribute as well as the add-method with
its outer if statement. The representation of the class Node itself is vertex v8

at the bottom of the figure. It has the type ClassDefinition and holds the
class name in its attribute called name. Methods and attributes of the class are
grouped in a block represented by the vertex v10, which is connected to the class
definition by the edge e32. In the same way, other elements of the source code are
represented by vertices and edges connecting them. Analogically to vertex v8,
all other vertices and edges are typed and may have attributes. For the sake of



clarity, the edge attributes keeping e.g. the position of the occurrences in the
source code are omitted. Here, the ASG is a directed acyclic graph (and not
only a tree). Every entity is represented only once but may occur several times
(e.g. vertex v13).

Fig. 2. Extract of the Graph Schema for the Java language

Graph schema. The types and names of the attributes depend on the types of
the vertices and edges of the graph. These types can be described by a graph
schema which acts as a metamodel of the graph. Since the Meta Object Facility
(MOF) [Obj06] is a widely accepted standard for metamodeling, Figure 2 shows
a small part of a metamodel for ASGs representing Java programs depicted as
a MOF compatible UML class diagram. The classes denote vertex types while
the associations between classes denote edge types. Thus, class diagrams may
be used to describe graph schemas.

The vertex type ClassDefinition mentioned above is depicted at the left
border of the diagram. It is a specialization of the vertex type Type and inherits
the name-attribute from this class. Every class consists of a Block, which is
connected to the class by a IsClassBlockOf edge as it was depicted in the
example graph above. A Block is a special kind of a Statement and groups other
Statements. The edge type IsStatementOf represents the general occurrence of
one statement in another and is the generalization of all other edge types which
group statements in each other. These generalizations are omitted in the diagram
for reasons of brevity but are important in the queries shown later in this paper.



Graph-based Tools. Schemas can be defined for all kinds of languages. There are
schemas for textual programming languages, and there are schemas for visual
languages. Schemas can be derived on all levels of granularity from fine-granulare
abstract syntax over middle level abstractions to coarse architecture descriptions
depending on their purpose. Different schemas can also be combined to larger
integrated schemas. Metamodel Engineering is the discipline that deals with
topic.

Given a graph schema, tools can work on graphs conforming to it. These tools
extract the relevant facts from software engineering artifacts (e.g. by parsing) and
store them as graphs in a graph repository. Several services on the repository (like
enrichment, analysis, abstraction, and transformation) help to use these graphs
for solving software engineering problems. These services may be application
specific or generic.

One of the services to gather information from the repository is querying. In
the following, this paper focuses on the generic query language GReQL. GReQL
works on TGraphs, which are introduced in the following section.

3 Terminology

To describe the graph-based approach to build reengineering tools in more detail,
an appropriate terminology is needed. This section introduces TGraphs and a
suitable notation for algorithms on TGraphs. Furthermore, some facts about
regular languages are enumerated, which are needed later for the treatment of
regular path expressions.

3.1 Graphs

To establish a comprehensive graph technology on a formal basis, a precise def-
inition of its underlying concepts is essential. In this paper, TGraphs are used.

TGraphs. TGraphs are a powerful category of graphs which are able to model not
only structural connections, but also all type and attribute information needed
for an object-based view on the represented model. TGraphs are typed, at-
tributed, and ordered directed graphs, i.e. all graph elements (vertices and edges)
are typed and may carry type-dependent attribute values. Furthermore, there
are orderings of the vertex and the edge sets of the graph and of the incidences
at all vertices. Lastly, all edges are assumed to be directed.

Definition: TGraph

Let
– Vertex be the universe of vertices,
– Edge be the universe of edges,
– TypeId be the universe of type identifiers,
– AttrId be the universe of attribute identifiers, and
– Value be the universe of attribute values.



Assuming two finite sets,
– a vertex set V ⊆ Vertex and
– an edge set E ⊆ Edge,

be given. G = (Vseq ,Eseq , Λseq , type, value) is a TGraph iff
– Vseq ∈ iseqV is a permutation of V ,
– Eseq ∈ iseqE is a permutation of E ,
– Λseq : V → iseq(E × {in, out}) is an incidence function where

∀ e ∈ E : ∃!v ,w ∈ V : (e, out) ∈ ranΛseq(v) ∧ (e, in) ∈ ranΛseq(w),
– type : V ∪ E → TypeId is a type function, and
– value : V ∪ E → (AttrId 7 7→ Value) is an attribute function where

∀ x , y ∈ V∪E : type(x ) = type(y)⇒ dom(value(x )) = dom(value(y)).

Thus, a TGraph consists of an ordered vertex set V and an ordered edge set
E . They are connected by the incidence function Λseq which assigns the sequence
of its incoming and outgoing edges to each vertex. For a given edge e, α(e) and
ω(e) denote its start vertex and target vertex, respectively. Furthermore, all
elements (i.e. vertices and edges) have a type and carry a type dependent set of
attribute-value pairs. Figure 1 visualizes an example TGraph.

Further Graph Properties. Given a TGraph G , paths are used to describe how
a given vertex w may be reached from a vertex v .

Definition: Path

A path from v0 to vk in a TGraph G is an alternating sequence
C =< v0, e1, v1, ..., ek , vk >, k ≥ 0,

of vertices and edges, where
∀ i ∈ N, 1 ≤ i ≤ k : α(ei) = vi−1 ∧ ω(ei) = vi .

v0 is called the start vertex α(C ) and vk the target vertex ω(C ) of the path.
A path is called a proper path, if all its vertices are distinct.

Definition: Derived Edge Type Sequence

Given a path C the corresponding sequence of edge types
< type(e1), type(e2), ..., type(ek ) >

is called its derived edge type sequence.

The existence of an edge from v to w is denoted by v → w , and the existence
of a path by v →∗ w . Furthermore, v →∗ denotes the set of all vertices reachable
from v by any path.

3.2 Pseudocode

Given an appropriate data structure for TGraphs [Ebe87], graph algorithms can
be implemented in a such a way that graph traversals are efficient. There is
a Java-API called JGraLab1 that allows a convenient and concise notation of
algorithms which is very near to pseudo code.

1 http://www.ohloh.net/p/jgralab



The pseudo code used in this article adheres to JGraLab’s conventions. There
is a type Graph, and graph elements are instances of the types Vertex and Edge,
respectively. A few of the API operations are listed here:� �

1 interface Vertex {
2 /∗∗ @return the sequence of outgoing edges at this vertex ∗/
3 Iterable<Edge> getAllOutEdges ();
4 ...
5 } 	� �� �
1 interface Edge {
2 /∗∗ @return the start vertex of this edge ∗/
3 Vertex getAlpha ();
4

5 /∗∗ @return the end vertex of this edge ∗/
6 Vertex getOmega ();
7 ...
8 } 	� �

According to these interfaces, the edges incident to a vertex v can be traversed
in the order defined by Λseq(v) using a for-loop like� �

1 for (Edge e: v.getAllOutEdges()) {
2 // process edge e
3 } 	� �

3.3 Regular Expressions and Automata

Since regular expressions are in center of the query language described in this
article, some basic facts about finite automata and regular expressions are com-
piled here ([HU79]).

Definition: Regular Expression

Given some alphabet Σ, the regular expressions (REs) over Σ are defined
inductively as follows:
(1) Φ is a regular expression and denotes the empty set ∅.
(2) ε is a regular expression and denotes the set {ε}.
(3) For each a ∈ Σ, a is a regular expression and denotes the set {a}.
(4) If r and s are regular expressions denoting the languages R and S , re-

spectively, then concatenation (rs), choice (r + s), and closure r∗ are
regular expressions that denote the sets RS , R∪S , and R∗, respectively.

The set of strings denoted by a regular expression r is called L(r), the lan-
guage described by r .

Languages described by regular expressions can also be described by deter-
ministic finite automata.



Definition: Deterministic Finite Automaton (DFA)

A deterministic finite automaton (DFA) dfa = (S , Σ, δ, s0,F ) over Σ consists
of
– a set S of states,
– a transition function δ : S ×Σ → S ,
– a start state s0, and
– a set F ⊆ S of terminal states.

DFAs can be visualized as graphs, where the vertices are the states of the
automaton and where there are edges e = s1 →a s2 iff δ maps (s1, a) to s2. An
example is shown in figure 4.

To use automata in software, they may be implemented as graphs, as well.
Only a few methods on automata are used in this paper:� �

1 interface Automaton extends Graph{
2 /∗∗ @return the state state
3 Vertex getStartState ();
4

5 /∗∗ @return true iff s is a terminal state
6 boolean isTerminal (Vertex s);
7

8 /∗∗ @return the sequence of all enabled transitions of type t out of state s ∗/
9 Iterable<Edge> getAllEnabledTransitions (Vertex s, Type t);

10 ...
11 } 	� �

An automaton dfa accepts a string l over an alphabet Σ by a state s ∈ S iff
l is the derived type sequence of a path from s0 to s in the graph of dfa. The set
of strings accepted by s is called L(dfa, s). Consequently, the language accepted
by an automaton dfa is L(dfa) := ∪s∈FL(dfa, s), where F is the set of terminal
states.

It is well known that every language accepted by some finite automaton is
also describable by a regular expression and vice versa [HU79]. It is possible
to construct an equivalent automaton dfa(r) from a given regular expression r
using Thompson’s construction [Tho68] followed by Myhill’s algorithm [Myh57].

Though in theory the size of the deterministic finite automaton built from a
given regular expression r of size n can be of the order 2n , this ’explosion’ does
not occur frequently in practice [ASU87]. Experience shows that DFA-acceptors
for regular languages have usually only about twice the size of their regular
expressions.

4 Querying

Since graphs are subject to algorithms, all decidable problems on graphs can
in principle be solved by respective graph algorithms. This approach affords
a lot of effort on the user side, since each request for information about the
model represented by a graph leads to a specific problem which has to be solved



algorithmically. Much of this work can be avoided in practice by supplying the
users with a powerful querying facility that allows easy end user retrieval for a
large class of information needs.

GReQL. In the case of TGraphs, the Graph Repository Query Language GReQL
supplies such a powerful facility for end user querying. GReQL was developed
in the GUPRO project [EKRW02] at the University of Koblenz-Landau. The
current version GReQL 2 was defined by Marchewka [Mar06]. There is a full op-
timizing evaluator for GReQL available on JGraLab implemented by Bildhauer
and Horn [Bil08,Hor09].

GReQL can be characterized as a schema-sensitive expression language with
dynamic types. It gives access to all graph properties and to the schema infor-
mation. GReQL queries may be parameterized. Its most valuable feature is an
elaborated concept for path expressions.

Since GReQL is an expression language, its semantics is self-evident. Every
GReQL query is a GReQL expression e which is either atomic or recurs to some
partial expressions e1, ..., ek whose evaluation is used to compose the resulting
value of e. Thus, using mathematical expressions as building blocks (see below)
the value of a GReQL expression is precisely defined.

The type-correctness of GReQL expressions is checked at evaluation time.
The type system itself is encapsulated in a composite Java class called JValue

(see below) in the context of JGraLab.

Querying. The goal of querying is to extract information from graph-based mod-
els and to make the extracted information available to clients, such as software
engineers or software engineering tools.

Querying is a service on TGraphs that - given a graph g and a GReQL query
text q - delivers a (potentially composite) object, that represents the query’s
result. The universe of possible query results is given by JValue.

Specification: Querying

Signature:
query : TGraph × String 7→ JValue

Pattern:
s = query(g , q)

Input:
a TGraph g and a valid GReQL query q

Output:
a JValue s which contains the result of evaluating q on g
(according to the semantics of GReQL)

Types. The types of GReQL values are defined by the Java class JValue, since the
values delivered by GReQL queries are usually passed on to Java software, e.g. for
rendering the result. JValue is a union type which comprises all possible types



that a GReQL result may have. Its structure is that of a composite, i.e. there
are some basic (atomic) types and some composite types that allow structured
values.

Basic types are integer, double, boolean, and string, and also a concept
for enumeration types is supplied. Some graph constituents are also supported
as types, namely vertex, edge and type, the former referring to vertex or edge
types in the schema.

Composite types allow structured data (tuples, lists, sets, bags, tables, maps,
and records). Also paths, path-systems (see below) and graphs are supported as
types as well as path expressions.

Expressions. Since GReQL is an expression language the whole language can be
explained and implemented along its different kinds of expressions:� �

1 0, 123 // integer literals

2 0.0, -2.1e23 // double literals

3 true, false // boolean literals

4 "hugo", "ab\n" // string literals

5 v // variable expression

6 let x := 3 in x + y // let-expression

7 x + y where x := 3 // where-expression

8 sqr(5) // function application

9 not true // unary operator expression

10 b and c, x > 0 // binary operator expressions

11 v.name // value access

12 x > 5 ? 7 : 9 // conditional expression

13

14 // quantified expressions

15 exists v:V{MethodDeclaration} @ outDegree(v)=0

16 forall e:E{IsCalledByMethod} @ alpha(e) = omega(e)

17

18 // FWR expression

19 from caller, callee:V{MethodDeclaration} //(1)

20 with caller <--{IsBodyOfMethod} <--{IsStatementOf}* //(2)

21 <--{IsDeclarationOfInvokedMethod} callee

22 report caller, callee end //(3)� �
For all basic types (integer, double, boolean, string, enum) appropriate

notations for literals are defined (lines 1 to 4). Variables stand for the value which
is bound to them (line 5). Since GReQL is a single assignment language, variables
may be bound only once in a given scope. All attribute and type identifiers from
the schema are predefined variables. Local scopes may be formed using let- or
where-constructs (lines 6 and 7).

Composite expressions may be constructed using function applications (line
8) or using unary or binary operators (lines 9 to 10), including a conditional
clause . (Besides the usual operators known for the basic types, there are also



special operators, called regular path descriptions (RPEs) which are themselves
expressions. RPEs and their usage are described in more detail in Section 5.)
Attributes of graph elements are accessed using a dot notation (line 11).

Since GReQL is heavily based on set-like expressions, also quantified expres-
sions can be used using exists- and forall-quantifiers (lines 15 to 16). Here
the restriction holds that the domains of the bound variables have to be finite.

The last form of expressions supplied by GReQL is the from-with-report(FWR)
expression (lines 19 to 22). Its result is a bag of values (or of tuples of values,
depending on the length of the report list) containing the results of the expres-
sions in the report clause (line 22) evaluated for each variable binding in the
declaration (line 19) which fulfills the condition of the with clause (lines 20 and
21) . Alternatively the result may also have the form of a table, a set or a map.

Function Library. The GReQL types go along with a set of operations that can
be applied on their instances. Besides the usual standard operations on basic
types, there is also a long list of operations on graph elements (like degree(),

alpha(), omega(), etc.) and aggregation operations (like avg(), count(), etc.).
These operations are kept in an editable function library which can be extended
easily. At present it contains about 100 functions.

Assuming that all functions in the library are polynomial in the size of the
graph, all GReQL expressions can be evaluated in polynomial time, if all vari-
ables in quantified and FWR expressions are bound to sets whose size is also
polynomial in the graph size.

5 Path Expressions

The language described up to now supports the evaluation of expressions in
the usual domains of arithmetics, boolean values, and strings and thus gives a
framework for extracting information from graph elements. But it does not yet
give enough support for structure dependent information extraction.

Support for such a kind of information extraction is given by GReQL’s so-
called regular path expressions. To exploit the knowledge encoded in the struc-
tural part of a TGraph, connection patterns can be described by regular expres-
sions over the set of element types.

5.1 Definitions

Simplified Syntax. Path expressions allow the comprehensive description of the
sets of all edges that have the same derived edge type sequence. GReQL uses
regular path expressions as a means to support navigation in queries.

Definition: Regular Path Expressions (simplified)

A regular path expression (rpe) is a non-empty regular expression over the
set EdgeTypeID ⊆ TypeID of all edge types, according to the following rules
(i) Given t ∈ EdgeTypeID , -->{t} is an rpe.



(ii) Given two rpes rpe1 and rpe2, (rpe1rpe2) is an rpe. [concatenation]
(iii) Given two rpes rpe1 and rpe2, (rpe1 | rpe2) is an rpe. [choice]
(iv) Given an rpe rpe, (rpe∗) is an rpe. [closure]

According to subsection 3.3, a regular path expression rpe defines a language
L(rpe) over EdgeTypeID . Assuming the usual precedences (concatenation before
choice before closure) unnecessary parentheses may be skipped.

This definition is simplified in the sense that only forward arrows --> are
used which describe edges in their original direction. There are several other
edge notations which may be used, as well:

<-- describes an edge traversed in the opposite direction.
<-> describes an edge traversed in any direction.
<>-- describes an aggregation edge traversed from its aggregate’s side.
--<> describes an aggregation edge traversed from its component’s side.

Semantics of Path Expressions. The semantics of a regular path expression rpe
is the set of all paths, whose derived edge type sequence conforms to the language
defined by the rpe.

Path descriptions are used as abstract operators. Assuming that rpe is a
regular path expression and v ,w are vertices, there are several ways to apply
rpe:

– v rpe is the set of vertices reachable from v according to rpe.
– rpe w is the set of vertices from which w is reachable according to rpe.
– v rpe w is the condition that w is reachable from v according to rpe.
– path(v,rpe,w) is a path from vertex v to vertex w if it exists.
– pathSystem(v,rpe) is a path system containing exactly one path for every

vertex reachable from v according to rpe.
– pathSystem(rpe,w) is a path system containing exactly one path from every

vertex from which w is reachable according to rpe.

All these applications can be evaluated by search algorithms on vertices which
are explained in more detail in the next subsections.

Full Syntax. Besides the simplified definition above, there are several other nota-
tions which are also allowed in GReQL path expressions. They all can be handled
as well inside the search algorithms to be described below.

(1) Restrictions to the vertex types of a path can be added by using an & sign
in front of a type in braces, e.g. &{MethodDeclaration} states that only
MethodDeclaration-vertices are allowed.

(2) For vertices and edges also boolean expressions are allowed instead of type re-
strictions, where the current element is denoted by thisVertex or thisEdge
respectively.

(3) A specific edge can be attached to an edge symbol by embedding any expres-
sion that evaluates to an edge, as in --e-> where e is a variable containing
an edge. Similarly vertex variables like v can be used to denote a special
vertex.



(4) Role names defined in the schema can be used instead of or additional to
edge types. E.g. <->{@member} restricts the set of edges to those which are
incident to a vertex with role member

(5) There are further operations on regular path expressions such as transitive
closure (rpe+), exponentiation (rpe^n), option ([rpe]) and transposition
(rpe^T).

Example. As an example, the query below denotes the set of all classes containing
a method which calls a method of class c in a graph according to the schema of
Figure 2.� �

1 c <--{IsClassBlockOf} <--{IsMemberOf} &{MethodDeclaration}

2 -->{IsDeclarationOfInvokedMethod} <--{IsMethodContainerOf}

3 -->{IsStatementOf}* -->{IsBodyOfMethod}

4 -->{IsMemberOf} -->{IsClassBlockOf} &{thisVertex <> c}� �
Here, all vertices reachable from a class c via paths according to the regular

path expression are returned. These paths have the following structure: They
lead from c to some member m of type MethodDeclaration (line 1). Starting
from m, they find some call expression (line 2) where m is called. Then, the
method m1 is determined that this call expression belongs to (line 3). Finally,
the class of m1 is derived, and it is assured that this class is different from c.

5.2 Search Algorithms

Regular path expressions can be evaluated efficiently by search algorithms on the
given graph. This holds for all features of regular path expressions described.

In the following, the algorithms needed for the simplified syntax are explained
in detail. It should be obvious how these algorithms can be extended to handle
the full syntax.

Search Algorithms. Search algorithms are traversal algorithms, i.e. they visit ev-
ery graph element of (a part of) a graph exactly once. Search algorithms mark
every vertex they visit to avoid double visits and use a collection object (usually
called a work list) to control the spreading of this marking over the graph.

The set of marked vertices can be kept in a set structure according to the
interface Set:� �

1 interface Set<E> {
2 /∗∗ @return true iff this set contains no elements ∗/
3 boolean isEmpty ();
4

5 /∗∗ inserts the element x into this set ∗/
6 void insert (E x);
7

8 /∗∗ @return true iff the element x is a member of this set ∗/
9 boolean contains (E x);

10 } 	� �



The work list can be stored in any list-like structure, described by the inter-
face WorkList:� �

1 interface WorkList<E> {
2 /∗∗ @return true iff this worklist contains no elements ∗/
3 boolean isEmpty ();
4

5 /∗∗ inserts the element x into this worklist (possibly multiple times) ∗/
6 void insert (E x);
7

8 /∗∗ returns (and deletes) an arbitrary element from the list ∗/
9 E extractAny ();

10 } 	� �
Reachability. Given implementations for the interfaces Set and WorkList, a
simple search algorithm can be given that visits all vertices in

reachG(i) := {v ∈ V | ∃C : Path • α(C ) = i ∧ ω(C ) = v}
i.e. the set of all vertices reachable from a given vertex i .

In the following pseudocode ”visiting” a vertex v or an edge e is expressed
by action points, which are noted as pseudo-comments like

// process vertex v or
// process edge e,

respectively. At these action points, potential visitor objects may be called to
execute some action on the respective element:� �

1 Algorithm: SimpleSearch:
2 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
3 // vertex−oriented search starting at vertex i
4

5 Set<Vertex> m = new ...;
6 WorkList<Vertex> b = new ...;
7

8 void reach(Vertex i) {
9 m.insert(i);

10 // process vertex i
11 b.insert(i);
12 while (! b.isEmpty()) {
13 // inv: set(b) ⊆ m ⊆ i →∗

14 v = b.extractAny();
15 for (Edge e: v.getAllOutEdges ()) {
16 // process edge e
17 w = e.getOmega();
18 if (! m.contains(w)) {
19 // process tree edge e
20 m.insert(w);
21 // process vertex w
22 b.insert(w);
23 } } } } 	� �



During the while-loop the work list b invariantly contains only marked ver-
tices that are reachable from i . This is expressed by the invariant in line 13,
where set(b) denotes the set of all elements contained in b. Thus, all marked
vertices are reachable. Conversely, any vertex reachable from i will eventually
be included into b. Since insertion into m is only done for non-marked vertices
and a vertex inserted into b is marked simultaneously, no vertex is inserted twice
into b.

Every vertex is extracted at most once from b and the inner for-loop traverses
its outgoing edges only. Thus, the body of the inner loop is executed at most
once for each edge. Together this leads to a time complexity of O(max (n,m))
for a graph with n vertices and m edges.

Reachability Tree. It is well-known that the spreading of the marking over the
graph defines a spanning tree of the marked part. This tree is rooted in i and
contains an incoming edge for every other vertex reachable from i .

Such a tree can be represented by a predecessor function
parentEdge : V 7→ E ,

which assigns its incoming edge to each non-root vertex. Such a tree is called
reachability tree for i →∗.

Partial functions like parentEdge on the vertices can be stored in a map-like
data structure, according to the interface VertexMarker which stores at most
one value at every vertex:� �

1 interface VertexMarker<E> {
2 /∗∗ stores the value x at the vertex v ∗/
3 void setValue (Vertex v, E x);
4

5 /∗∗ @return the value stored at the vertex v ∗/
6 E getValue (Vertex v);
7 } 	� �

Given such a vertex marker, the computation of parentEdge can be done in
the algorithm SimpleSearch by refining the action point where the tree edges
are processed. Here, e is the current edge and w is the newly marked vertex:� �

1 VertexMarker<Edge> parentEdge = new ...;
2

3 process tree edge e:
4 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
5 parentEdge.setValue(w,e); 	� �

Paths. Given parentEdge, as computed by the algorithm Simple Search, a
corresponding path i →∗ v is implicitly given for every vertex v reachable from
i . Such a path can be issued in reverse order by backtracing over the tree edges
starting at v .



� �
1 process path i →∗ v :
2 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
3 z := v;
4 //process path vertex z;
5 while (z != i) do {
6 e := parentEdge.getValue (z);
7 // process path edge e;
8 z := e.alpha();
9 // process path vertex z;

10 } 	� �
Shortest Paths. The work list used in search algorithms can be implemented
in various ways. It is well-known, that a queue-like implementation leads to a
breadth-first search (BFS) approach, whereas a stack-like implementation implies
a depth-first search (DFS) of the graph.

The breadth-first implementation of graph traversal is particularly interest-
ing, since it implies that the path-tree is a shortest path-tree, i.e. all paths in the
path tree have a minimum number of edges. Thus, GReQL uses breadth-first-
search for the evaluation of regular path expressions.

Example. Figure 3(a) contains the sketch of a TGraph to demonstrate the effect
of Algorithm SimpleSearch and the computation of parentEdge. Assume that
the vertex set {A,B ,C ,D ,E} and the edge set {1,2,3,4,5,6,7} as well as the
incidences are ordered according to their identifiers. The edge types {a, b} are
also shown.

(a) TGraph (b) BFS Tree

Fig. 3. Sample TGraph and its BFS tree

Using a breadth-first search starting in vertex A, the tree shown in Fig-
ure 3(b) is derived. It shows that all vertices are reachable from A. E.g. a path
for vertex E can be derived by backtracing from E :

< A, 1,B , 5,D , 7,E >.

5.3 Automaton-Driven Search Algorithms

Algorithm SimpleSearch explores parts of the graph in order to find all vertices
that are reachable from the start vertex i by traversing paths from i to v for
every v ∈ i →∗.



To explore paths whose edge type sequence conforms to a regular path ex-
pression rpe in a search algorithm, the traversal of edges must be pre-checked
according to the derived edge type sequence language defined by the expression
rpe. Only paths whose derived edge type sequence conforms to rpe are to be
allowed.

As cited in subsection 3.3 there is an accepting deterministic finite automaton
dfa(rpe) for every regular path expression rpe with L(dfa) = L(rpe). Using
Thompson’s and Myhill’s algorithms such an automaton can be computed easily.

rpe-reachability. Let dfa be a DFA for the edge type sequence of rpe, let s be
some state in Sdfa , and let G be a graph with a given vertex i ∈ VG . Then

reachG,dfa(i , s) :=
{v ∈ V | ∃C : Path • α(C ) = i ∧ ω(C ) = v ∧ typeSeq(C ) ∈

L(dfa, s)}
is the set of all vertices reachable from i by a path whose derived edge type
sequence is accepted by the state s in Sdfa .

Then, the problem of finding all vertices v which are reachable by a path
conforming to some regular path expression rpe reduces to the derivation of all
vertices in some set reachG,dfa(i , st), where dfa = A(rpe) and st ∈ Fdfa is a
terminal state.

The simple algorithmic approach described above in Algorithm SimpleSearch

for reachability problems can easily be generalized to solve rpe-reachability. To
achieve this, the finite automaton dfa(rpe) for L(rpe) is used to guide the traver-
sal procedure.

Instead of a boolean marking of the vertices, now the vertices are marked
with the states of dfa, i.e. a vertex set marker

marking : Vertex 7→ PVdfa

is assumed. Here, a vertex v gets marked by all states s such that v ∈ reachG,dfa(i , s).� �
1 interface VertexSetMarker<E> {
2 /∗∗ inserts value x into the set at vertex v ∗/
3 void addValue (Vertex v, E x);
4

5 /∗∗ @return true iff the value x is in the set at vertex v ∗/
6 boolean hasValue (Vertex v, E x);
7 } 	� �

Using this generalized marker, which assigns sets of automaton states to
the vertices of the graph, a vertex v gets marked by a state s if and only if
v ∈ reachG,dfa(i , s), i.e. if there is a path from i to v whose derived type sequence
is accepted by s.



� �
1 Algorithm: AutomatonDrivenSearch:
2 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
3 // vertex−oriented search starting at vertex i guided by the automaton a
4

5 VertexSetMarker<State> m = new ...;
6 WorkList<Vertex x State> b = new ...;
7 VertexMarker<Edge x State> parentEdge = new ...;
8

9 void reach(Vertex i, Automaton dfa);
10 s := dfa.getStartState ();
11 m.addValue(i, s);
12 // process vertex i in state s;
13 b.insert(i,s);
14 while (! b.isEmpty()) {
15 // set(b, s) ⊆ {v ∈ V | v .isMarked(s)} ⊆ reachG,dfa(i , s)
16 (v, s) := b.extractAny();
17 for (Edge e: v.getAllOutEdges()) {
18 // process edge e
19 w := e.getOmega();
20 for (Edge t: dfa.getAllEnabledTransitions(s, e.getType());
21 s1 := t.getOmega();
22 if (! m.hasValue(w,s1)) {
23 parentEdge.setValue((w,s1), (e,s));
24 m.addValue(w,s1);
25 b.insert(w,s1);
26 if (dfa.isTerminal (s1))
27 // process vertex w in state s1
28 } } } } } 	� �

The correctness arguments for Algorithm AutomatonDrivenSearch can be
reduced to those of Algorithm SimpleSearch. Assume that the automaton dfa
consists of the states Vdfa = {s0, ..., sk}. Then, Algorithm AutomatonDrivenSearch

corresponds to a search on a layered graph (Figure 5) with the vertex set VG ×
Vdfa where an edge from (v , s) to (w , s1) exists if and only if

– there is an edge e = v → w in G and
– there is an edge s →t s1 in A, where t = type(e).

Algorithm AutomatonDrivenSearch terminates and visits exactly those ver-
tices that are reachable from i via paths conforming to rpe in the layered graph.

If k is the number of states and l is the number of transitions of the automaton
dfa, the inner loop (lines 20-28) is executed l ×m times and its if-statement is
executes k×n times at most, leading to an overall time complexity of O(max (k×
n, l ×m). Since in practice k and l are small multiples of the size of the regular
expression rpe (Subsection 3.3) the algorithm is practically feasible.

Using a breadth-first approach, the algorithm delivers shortest paths also in
this case. But it should be noted, that these are paths in the layered graph. In
the orgininal graph, the paths themselves are not necessarily proper paths any
more, i.e. vertices and edges may occur more than once on them.



Example. If the TGraph of Figure 3(a) is searched from A according to the
GReQL path expression in A (-->{a}-->{b})*-->{b}, the automaton shown
in Figure 4 can be used to drive the search. Here, s0 is the start state, and s2 is
the (only) terminal state.

Fig. 4. DFA

Given this automaton, the resulting graph can be visualized using exactly
one layer for each state (Figure 5(a)). Its breadth-first search tree is shown in
Figure 5(b). Since s2 is accepting, there are apparently three vertices in the result
set {B ,D ,E} and back tracing delivers three paths:

< A, 1,B , 2,B , 2,B >
< A, 1,B , 2,B , 5,D >
< A, 1,B , 5,D , 7,E >

All of these paths have minimum length, but only the third one is a proper path.

(a) Layered Graph (b) BFS Tree

Fig. 5. Search driven by automaton

Paths. The method to extract paths for each vertex found by Algorithm Automaton-
DrivenSearch can also be generalized accordingly. Given a partial function

parentEdge : VG ×VA 7→ E ×VA

the paths can be enumerated, as well.
Assuming that st is a terminal state of A, and assuming that v is a vertex

which is marked by st , i.e. st ∈ m(v), a path can be computed by backward
traversal in the layered graph:



� �
1 process path i →∗ v :
2 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
3 (z,s) := (v,st);
4 // process vertex z in state s;
5 while ((z,s) 6= (i,s0)) {
6 (e,s) = z.parentEdge(z,s);
7 // process edge e in state s;
8 z = e.this();
9 // process vertex z in state s

10 } 	� �
Since parentEdge contains the complete information about all paths starting

in i , this function is used as a representation of path systems in JValue.

6 Applications of Querying

The TGraph approach was developed in the course of tool development projects.
Kogge [ESU99] was a metaCASE tool, where TGraphs were used to realize
an adaptable visual editor using a bootstrapping approach. Gupro [EKRW02]
makes use of TGraphs as representations of software artefacts and supplies an
integrated querying and browsing facility on code. Here, GReQL is the generic
language used to extract information from source code. TGraphs together with
GReQL are also used as the basic repository technology for artefact comparison
and retrieval in ReDSeeDS [EBRS08].

Using a query language like GReQL, a lot of program analysis and program
understanding tasks can be solved in a uniform manner. A query may deliver
data for generic graph algorithms or can even replace a graph algorithm.

Examples for tasks that can be done using a query are
– complementing the graph by additional information that can be inferred,

e.g., as a preprocessing step for other tasks,
– derivation of new views on the graph, e.g., derivation of the call graph, or
– computation of metrics.

In the following, we present some example GReQL queries to calculate some
of this information on software represented as graphs according to the schema
described in Figure 2 on page 4.

6.1 Edge Inference

The size and complexity of queries depends on the structure and completeness
of the graphs and thus on the meta model and the parsers which are used for
extracting the graphs from the source code.

Assume the parsers that extract the graph according to Figure 2 do not
resolve all method invocations to their definitions but only the invocations of
methods defined in the same class. Instead of computing the missing links in
each query where they are needed, the work on the graph can be simplified



by querying this information once and materializing the result as edges in the
graph.

GReQL itself is not meant to create edges, but it can be used to determine
the respective set of vertex pairs which are to be connected. Then, the query
is embedded into an algorithm that uses the query result and materializes the
edges.

The query listed below finds the appropriate method declaration for every
method invocation which is not yet properly linked to its declaration by the
parser. Since GReQL is a declarative language, the query simply denotes which
pairs are to be connected. (The GReQL optimizer assures an efficient evaluation
of the query.)� �

1 from inv:V{MethodInvocation}, def:V{MethodDeclaration}

2 with isEmpty(inv <--{IsDeclarationOfInvokedMethod})

3 and theElement(inv <--{IsNameOfInvokedMethod}).name

4 = theElement(def <--{IsNameOfMethod}).name

5 and inv <--{IsMethodContainerOf}

6 ( <--{IsDeclarationOfInvokedMethod} <--{IsReturnTypeOf}

7 | <--{IsDeclarationOfAccessedVariable} <--{IsTypeOfVariable})

8 <--{IsTypeDefinitionOf}<--{IsClassBlockOf}<--{IsMemberOf} def

9 report inv, def end� �
The first and the last line state that pairs of MethodInvocation and Method-

Declaration vertices should be reported. The lines in between impose some
constraints on the pairs to be reported by describing exactly the connection
path between them. Line 2 excludes those invocations that are already linked to a
declaration. Lines 3-4 force the names of the invoked method and the declaration
to be equal. Method overloading is not considered here for reasons of brevity but
can be included in the same way.

The most interesting part of the query is the path expression in lines 5-8.
This path expression describes a path starting at the invocation and ending
at the declaration. The first IsMethodContainerOf edge leads to the expres-
sion that returns the object on which the method is called. In the example
s.compareTo(data) from page 3 the edge connects the call of compareTo to the
variable access s. The following path alternative in lines 6-7 describes the path
leading to the type of the object on which the method is called. The last part of
the path in line 8 denotes the connection of this type with the method defined
as a member of the main block of the class defining the type.

While the links are computed by the parser for invocations of methods defined
in the same class, a proper linking of methods of other classes is possible only
if the class whose method is called is known. For methods of objects which are
returned by other method invocations or variable accesses, this class is obviously
only known if the invocation or access is properly linked to the appropriate
definition. This is a recursive problem which can either be solved in the query
itself or by iterating the query in the embedding algorithm, which seems to be
more elegant in this case.



6.2 Call Graph Computation

Similarly to the calculation of missing information that was not yet provided by
the parser, it is also possible to calculate and materialize further information in
the graph which enables a higher-level view. This is reverse engineering in the
stronger sense, where more abstract information is derived from concrete data.

The query listed below computes the ”call graph” of a given graph, i.e. it
determines pairs of methods which call each other. This is done by looking at
all method invocations contained in the body of a method. The query result can
again be manifested as edges, in this case with edges of type IsCalledByMethod.� �

1 from caller, callee:V{MethodDeclaration}

2 with caller <--{IsBodyOfMethod} <--{IsStatementOf}*

3 <--{IsDeclarationOfInvokedMethod} callee

4 report caller, callee end� �
6.3 Metrics Computation

Metrics constitute a quite natural application of querying. As an example, one
of the metrics of the Chidamber&Kemerer metrics suite [CK91] is shown in the
following: The CBO (coupling between object classes) metric assigns a natural
number to each class, depicting the number of other classes it is coupled with.
Here coupling means usage of variables or methods of the other class. Given a
graph preprocessed as shown above, this metric can be calculated directly.� �

1 from c:V{ClassDefinition}

2 report

3 c.name as "Class",

4 count(

5 c<--{IsClassBlockOf} <--{IsMemberOf}

6 (<--{IsCalledByMethod} |

7 <--{IsBodyOfMethod,IsVariableCreationOf} <--{IsStatementOf}*

8 <--{IsDeclarationOfAccessedVariable}-->{IsVariableCreationOf})

9 -->{IsMemberOf} -->{IsClassBlockOf} &{thisVertex<>c}

10 ) as "CBO"

11 end� �
For every class, the set of elements is computed that are reachable by a path

that leads to an invocation of a method or an access of a variable of a different
class. The size of this set is counted by the GReQL-function count and reported
as the CBO for this class. The result of this query will be a table with two
columns, named “Class” and “CBO” containing the class name and the number
of classes this class is coupled with.



7 Related work

Graphs as repository structures in software engineering tools and querying of
these graphs is an enabling technology [KW99] in software reengineering. The
definition of GXL [HSSW06] (which is inspired by TGraphs) as an interchange
format for reengineering data gives further evidence that graphs are an appro-
priate abstraction used by many reengineering tools.

Graph Repositories. There are libraries for graphs which keep them in memory
and provide a set of predefined algorithms on them, e.g., LEDA (The Library
of Efficient Data Types and Algorithms) [MNU97] and the Boost Graph Library
(BGL) [SLL01]. The latter provides different implementation variants for graph
such as edge lists or adjacency lists and matrices.

GRAS [KSW95] is a graph repository developed in the IPSEN project since
1985. A GRAS database is a graph pool that may contain several directed and
typed graphs. (GRAS graphs have only vertex attributes and no edge ordering.)
The structure of the graphs can be meta modeled by graph schemas and compo-
sition of graphs to hierarchical graphs is possible. GRAS supports direct main
memory storage as well as storage in a relational database. DRAGOS (Database
Repository for Applications using Graph Oriented Storage) [Böh06], the succes-
sor of GRAS, is inspired by the graph exchange language GXL and overcomes
the restrictions on edge attributes of GRAS. Additionally, DRAGOS allows the
usage of directed hyper edges which may run between vertices as well as edges
or endpoints of edges. Similarly to GRAS, DRAGOS also supports nesting of
graphs.

JGraLab keeps the repository in memory and provides the modeling power
of full TGraphs, which are kept in a data structure designed to support graph
traversal efficiently. Edges are first class objects and may be traversed in any
direction without additional costs.

Graph Query Languages. Apart from the XML query languages XQuery [B+07b]
and XPath [B+07a] and the SPARQL RDF Query Language [PS08], there are
also some languages that work on graph models directly. One such language
is Gram [AS92] which includes walks and hyperwalks as a concept similar to
paths and path systems. GOQL is an extension of the Object Query Language
OQL used to query object-oriented databases enriched with constructs to query
typed graphs. GOQL bears some syntactical analogy to GReQL as its queries
are usually select-from-where statements and it allows to formulate simple path
queries including constraints on the elements in a path. All these languages follow
the idea of querying depicted in section 4, i.e. given a graph and a query, a value
possibly containing graph elements is computed as the query result, which may
also contain graph elements.

Languages like GraphQL [HS08] follow a different paradigm. Here, not only
the data, but also the query and the query result are graphs. Then, query evalu-
ation is a matching of graph patterns combined with graph rewrite rules, either
transforming the given graph or creating a new one. Also G+ [MW89] and its



successor GraphLog [CM90] represent the query and the result as a graph and
support regular path expressions and an evaluation by an automaton-driven
search similar to the one used in GReQL. These kinds of languages lead to
graph transformation languages in general, like PROGRES [RW08], which may
be interpreted as query languages in wider sense.

Compared to these languages, GReQL supports the most powerful form of
regular path expressions, and only GReQL computes also paths and path systems
as first class values.

Query languages for software re-engineering. Besides graph query languages,
several other kinds of languages based on predicate logic or relational calculus
are established in software re-engineering. [AHR09] presents a detailed compar-
ison of re-engineering languages based on their features. There are two main
differences between all those languages and GReQL. The first refers to the rep-
resentation of data, since edges as first class objects may directly represent oc-
currences of vertices in different places without artificial extra-nodes. The second
is related to evaluation, which is search-based and does not compute and ma-
terialize relations, but explores only that part of the graph that is needed for
query answering.

CrocoPat [Bey06,BNL05] is a relational programming language based on first-
order predicate calculus. It uses Binary Decision Diagrams (BDDs) for internal
storage of relations. Like many other tools in software reengineering, CrocoPat
uses the Rigi Standard Format (RSF) to store relations in files. CrocoPat pro-
grams are written in the RML (Relation Manipulation Language) and consist of
n-ary relational expressions. RML is an imperative language whose statements
are executed sequentially, embedded in control structures such as IF, FOR and
WHILE.

Supplying different ways to define n-ary relations and to combine existing
relations to new ones, CrocoPat provides powerful means of data manipulation
and retrieval. Regular path expressions can be simulated by logical operators to
combine and by existential quantifiers to concatenate relations. E.g., the path
expression

caller <--{IsBodyOfMethod} <--{IsStatementOf}*
<--{IsDeclarationOfInvokedMethod} callee

used in Section 6.2 can be translated to the CrocoPat expression
calls(caller,callee) :=

EX(body, IsBodyOfMethod(body,caller)

& EX(statement, TC(IsStatementOf(statement,body))

& IsDeclarationOfInvokedMethod(callee,statement))).
A language based on Tarski’s relational calculus is Grok [Hol08]. Grok is an

untyped language, where all basic elements are represented as strings, but logical
and mathematical operations can be applied to these elements. Sets and binary
relations, which are just sets of tuples, are supported by Grok. Grok’s operators
generally apply across entire relations and not just to single entities.

The simulation of regular path expressions is possible by the concatenation
of relations using the ◦ operator. As an example,



(inv IsBodyOfMethod) o (inv(IsStatementOf)*)

o (inv IsDeclarationOfInvokedMethod)

represents the path expression used above. The result of applying this Grok
operation is again a relation, which is stored to main memory to allow a fast
access.

RScript [Kli08] is statically typed in contrast to Grok. RScript reflects its
primary application domain, the software analysis, in its features and data types.
As an example, a data type location is provided, which represents a source
locations as a combination of a filename and the position in the file. Besides the
basic types boolean, integer, string, RScript provides the composite types
tuples, sets and relations as well as user-defined types. Sets as well as relations
can be nested and also a light version of n-ary relation is also supported in
RScript. Similarily to Grok and CrocoPat, the combination of relations can be
used to simulate regular path expressions.

All these languages look at graphs as sets of vertices and relations between
vertices whereas GReQL has a focus on paths and traversals of graphs.

Comparison. While e.g. Alves et al. [AHR09] have compared the main features
of re-engineering query languages including the ones described above, there is no
comparison of their performance up to now. Below, such a comparison is done
exemplarily for CrocoPat and Grok, which seem to be the best established ones.
and whose interpreters are publicly available. Two of the queries depicted in sec-
tion 6, namely the calculation of the call-relation (Section 6.2) between methods
and the CBO metrics (Section 6.3) are used for comparison. They were applied
to the ASGs of four software systems, whose source code is freely available. Two
small systems, the parser generator AntLR2 and the test-environment JUnit3

were used as well as two bigger systems, the Build-Tool Apache Ant4 and the
TGraph library JGraLab itself.

The abstract syntax graphs of the systems were extracted from the source
code using a fact-extractor from Java to TGraphs, which makes use of edge
attributes and ordering. The TGraphs were converted to the Rigi Standard For-
mat (RSF), which can be imported by CrocoPat and Grok. Neither Grok nor
CrocoPat allow for attributed relationships but require artificial relation-objects
to represent such attributes. To keep the graphs and queries simple, we decided
to use simple links instead of relation-objects and to accept, that the attributes
of the edges were lost. While the attributes are not used in the queries below,
they may be necessary for more complex analyses.

The evaluation times of both queries are shown in the table below for all three
languages and all ASGs. Note, that CrocoPat and Grok are interpreters whose
interpretation time is included in the overall result, whereas GReQL queries are
parsed and optimized before evaluation. Since GReQL queries can be precom-

2 www.antlr.org
3 www.junit.org
4 ant.apache.org



piled into a query library and reused for different graphs, the net evaluation time
is given, as well.

The table shows that GReQL performs quite well in comparison to CrocoPat
and Grok for the examples used.

AntLR JUnit Apache Ant JGraLab
90 classes 110 classes 1400 classes 700 classes
73k elements 42k elements 1.1m elements 1.7m elements

Calls-
Query
CrocoPat 1.9s 1.9s 62s 70s
Grok 0.3s 0.1s 7.0s 6.7s
GReQL 0.9s 0.8s 3.7s 3.5s

(0.13s eval) (0.08s eval) (2.7s eval) (2.4s eval)

CBO-
Query
CrocoPat 2s 1s 2m 40s 1m 30s
Grok 1.0s 0.5s 9.6s 10.1s
GReQL 1.1s 1.1s 6.7s 3.8s

(0.16s eval) (0.15s eval) (5.8s eval) (2.9s eval)

8 Conclusion

This paper showed how knowledge from graph algorithms can be used to con-
struct efficient software engineering tools. It presented GReQL as an efficient
and convenient graph query language. The efficient evaluation of regular path
expressions in GReQL by search algorithms was explicated in detail.

GReQL can be used to query, enrich, abstract or analyze the graph repre-
sentation of software engineering artifact. A few example applications in reverse
engineering were shown. GReQL querying is also an enabling technology for
software engineering tools in general since many kinds of information can be
easily be extracted from graph-based models using queries [KW99], including
information needed by the tool itself.

The usage of GReQL as a key technology in the reengineering tool GUPRO
is presented in more detail in [EKRW02]. GUPRO is a generic tool that supports
schema dependent browsing and querying of source code, using GReQL as its
query language.

GReQL has been extended to include context-free path descriptions by Stef-
fens [Ste08]. Currently ongoing work aims at the extension of GReQL and the
TGraph approach to more general distributed and hierarchical hyper-TGraphs
(DHHTGraphs).



References

[AHR09] T. L. Alves, J. Hage, and P. Rademaker. Compar-
ative study of code query technologies. Online PDF,
wiki.di.uminho.pt/twiki/pub/Personal/Tiago/Publications/Alves09b-
draft.pdf, 2009. 04.06.2010.

[AS92] B. Amann and M. Scholl. Gram: A graph data model and query language.
In European Conference on Hypertext, 1992.

[ASU87] A. Aho, R. Sethi, and J. Ullmann. Compilers - Principles, Techniques and
Tools. Addison-Wesley, 1987.

[B+07a] A. Berglund et al., editors. XML Path Language (XPath) 2.0, W3C Rec-
ommendation. January 2007.

[B+07b] S. Boag et al., editors. XQuery 1.0: An XML Query Language, W3C Rec-
ommendation. January 2007.

[Bey06] Dirk Beyer. Relational programming with crocopat. In ICSE ’06: Proceed-
ings of the 28th international conference on Software engineering, pages
807–810, New York, NY, USA, 2006. ACM.

[Bil08] D. Bildhauer. Entwurf und Implementation eines Auswerters für die
TGraphanfragesprache GReQL 2. VDM Verlag, 2008.

[BNL05] Dirk Beyer, Andreas Noack, and Claus Lewerentz. Efficient relational cal-
culation for software analysis. IEEE Trans. Softw. Eng., 31(2):137–149,
2005.

[Böh06] B. Böhlen. Ein parametrisierbares Graph-Datenbanksystem für Entwick-
lungswerkzeuge. Shaker Verlag, Aachen, 12 2006.

[CK91] S. R. Chidamber and C. F. Kemerer. Towards a metrics suite for ob-
ject oriented design. In OOPSLA ’91: Conference proceedings on Object-
oriented programming systems, languages, and applications, pages 197–211,
New York, NY, USA, 1991. ACM.

[CM90] M. P. Consens and A. O. Mendelzon. Graphlog: a visual formalism for
real life recursion. In PODS ’90: Proceedings of the ninth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages
404–416, New York, NY, USA, 1990. ACM.

[Ebe87] J. Ebert. A Versatile Data Structure For Edge-Oriented Graph Algorithms.
Communications ACM, 30(6):513–519, 6 1987.

[EBRS08] J. Ebert, D. Bildhauer, V. Riediger, and H. Schwarz. Using the TGraph
Approach for Model Fact Repositories. In Proceedings of the International
Workshop on Model Reuse Strategies (MoRSe 2008), 5 2008.

[EKRW02] J. Ebert, B. Kullbach, V. Riediger, and A. Winter. GUPRO. Generic
Understanding of Programs - An Overview. Electronic Notes in Theoreti-
cal Computer Science, http://www.elsevier.nl/locate/entcs/volume72.html,
72(2), 2002.

[ERW08] J. Ebert, V. Riediger, and A. Winter. Graph Technology in Reverse Engi-
neering, the TGraph Approach. In R. Gimnich et al., editors, 10th Work-
shop Software Reengineering (WSR 2008), volume 126 of GI Lecture Notes
in Informatics, pages 67–81, Bonn, 2008. GI.

[ESU99] J. Ebert, R. Süttenbach, and I. Uhe. JKogge: a Component-Based Approach
for Tools in the Internet. In Proceedings STJA ’99, Erfurt, 1999.

[Hol08] Richard C. Holt. Wcre 1998 most influential paper: Grokking software
architecture. In WCRE, pages 5–14, 2008.

[Hor09] T. Horn. Ein Optimierer für GReQL2. GRIN Verlag GmbH, 2009.



[HS08] H. He and A. K. Singh. Graphs-at-a-time: query language and access meth-
ods for graph databases. In SIGMOD ’08: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 405–418,
New York, NY, USA, 2008. ACM.

[HSSW06] Richard C. Holt, Andy Schürr, Susan Elliott Sim, and Andreas Winter.
GXL: a graph-based standard exchange format for reengineering. Science
of Computer Programming, 60(2):149–170, 4 2006.

[HU79] J. E. Hopcroft and J. D. Ullmann. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1079.

[Kli08] Paul Klint. Using Rscript for software analysis. In Working Ses-
sion on Query Technologies and Applications for Program Comprehension
(QTAPC), 2008.

[KSW95] N. Kiesel, A. Schürr, and B. Westfechtel. GRAS, a graph oriented (software)
engineering database system. Information Systems, 20(1):21–51, 1995.

[KW99] B. Kullbach and A. Winter. Querying as an Enabling Technology in Soft-
ware Reengineering. In C. Verhoef and P. Nesi, editors, Proceedings of
the 3rd Euromicro Conference on Software Maintenance & Reengineering,
pages 42–50, Los Alamitos, 1999. IEEE Computer Society.

[Mar06] K. Marchewka. GReQL 2. Master’s thesis, Universität Koblenz-Landau,
Institut für Softwaretechnik, 2006.

[MNU97] K. Mehlhorn, S. Näher, and C. Uhrig. The leda platform of combinatorial
and geometric computing. In ICALP ’97: Proceedings of the 24th Interna-
tional Colloquium on Automata, Languages and Programming, pages 7–16,
London, UK, 1997. Springer-Verlag.

[MW89] A. O. Mendelzon and P. T. Wood. Finding regular simple paths in graph
databases. SIAM Journal on Computing, 24(6):1235–1258, 1989.

[Myh57] J. R. Myhill. Finite automata and the representation of events. Technical
Report 57-624, Wright Patterson AFB, Ohio, 1957.

[Nag80] M. Nagl. An incremental compiler as component of a system for software
generation. In Programmiersprachen und Programmentwicklung, 6. Fachta-
gung des Fachausschusses Programmiersprachen der GI, pages 29–44, Lon-
don, UK, 1980. Springer-Verlag.

[Obj06] Object Management Group. Meta Object Facility (MOF) Core Specifica-
tion, OMG Availiable Specification, Version 2.0, 2006.

[PS08] E. Prud’hommeaux and A. Seaborne, editors. SPARQL Query Language
for RDF, W3C Recommendation. January 2008.

[RW08] U. Ranger and E. Weinell. The graph rewriting language and environment
PROGRES. Applications of Graph Transformations with Industrial Rele-
vance: Third International Symposium, AGTIVE 2007, Kassel, Germany,
pages 575–576, 2008.

[SLL01] J. G. Siek, L. Lee, and A. Lumsdaine. The Boost Graph Library: User Guide
and Reference Manual. Addison-Wesley Professional, 2001.

[Ste08] T. Steffens. Kontextfreie Suche auf Graphen. VDM Verlag, 2008.
[Tho68] K. Thompson. Regular expression search algorithms. Communications of

the ACM, (11):419–422, 6 1968.


